• 제목/요약/키워드: mechanical joining strength

검색결과 422건 처리시간 0.025초

냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도 (Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading)

  • 김종봉;김택영;강세형;김호경
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

Al2O3/Cu 접합에서 Metallizing paste의 조성이 접합강도에 미치는 영향 (The Effect of the Composition of Metallizing Paste on the Bonding Strength in the Joining of Al2O3/Cu to Cu)

  • 윤종혁;박현균
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.65-70
    • /
    • 2013
  • In joining Alumina to copper plate by Mo-Mn metallizing process, the effects of the composition of metallizing paste on the bonding strength were investigated. The bonding strength increased with increasing Mn amount in the paste up to 20% but followed by the decrease with addition of Mn. The maximum bonding strength reached 50MPa at 20%Mn when heated to $1550^{\circ}C$ for 60minute. The addition of Si to the metallizing powder increased the bonding strength of the joint by enhancing the mechanical bonding between the Alumina and the metallizing layer due to the decrease of layer viscosity with the addition of $SiO_2$. It is thought that MnO reacted with $Al_2O_3$ to yield $MnAl_2O_4$ spinel, forming a joint.

중첩된 박판간의 결합을 위한 접착-성형공정 (Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair)

  • 정창균;김태정;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향 (Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints)

  • 윤호철;최준용;김연직;임재규
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

표면 요철 처리 된 광경화성수지의 레이저 접합 특성 (Joining Characteristics of Corrugated Polymer Surface by Laser)

  • 윤성철;최해운
    • 한국레이저가공학회지
    • /
    • 제18권4호
    • /
    • pp.6-11
    • /
    • 2015
  • Specially designed and 3D printed samples were prepared and joined by a diode laser source. To increase the strength of joining and reliability of samples, the surface was patterned by using a 3D printer. The joining surface was prepared as hemispherical shape with no-patterns, 0.5mm pitch, 0.75mm pitch and 1mm pitch. The optical properties of samples were measured by using an integrated sphere where classical Kubelka-Munk theory and modified Richard-Mudgetts theory for the analysis applied. Scanning speed was set at 500mm/min and laser power was varied between 9 and 10watts for the preliminary joining characteristic analysis.

피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구 (Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics)

  • 이세희;성대용;양동열
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

LED 및 반도체 소자 리드프레임 패키징용 Cu/STS/Cu 클래드메탈의 기계적/열전도/전기적 특성연구 (Study on the Mechanical Properties and Thermal Conductive Properties of Cu/STS/Cu Clad Metal for LED/semiconductor Package Device Lead Frame)

  • 이창훈;김기출;김용성
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.32-37
    • /
    • 2012
  • Lead frame which has a high thermal conductivity and high mechanical strength is one of core technology for ultra-thin electronics such as LED lead frames, memory devices of semiconductors, smart phone, PDA, tablet PC, notebook PC etc. In this paper, we fabricated a Cu/STS/Cu 3-layered clad metal for lead frame packaging materials and characterized the mechanical properties and thermal conductive properties of the clad metal lead frame material. The clad metal lead frame material has a comparable thermal conductivity to typical copper alloy lead frame materials and has a reinforced mechanical tensile strength by 1.6 times to typical pure copper lead frame materials. The thermal conductivity and mechanical tensile strength of the Cu/STS/Cu clad metal are 284.35 W/m K and $52.78kg/mm^2$, respectively.

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향 (Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint)

  • 윤호철
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

大入熱 高張力鋼 熔接部 의 機械的 特性 變化 에 關한 硏究 (A study on the Mechanical Properties in High Heat Input Welds of High Strength Steels)

  • 김영식;배차헌
    • Journal of Welding and Joining
    • /
    • 제1권1호
    • /
    • pp.47-55
    • /
    • 1983
  • The mechanical and microstructural properties in high heat input welds of home-made SM 50 high strength steels were investigated and compared with the manual shielded metal arc welds. Also, the fracture toughnesses of the simulated weld-bonds with various thermal cycles were quantatively examined in order to provide the basic data for further development of the high strength steels for high input welding. Main results obtained are as follows. (1) The embrittlement degree and the coarse grained region in high heat input welds appear to be extraordinarily large compared with the manual shielded metal arc welds, while the difference in change of nicrohardness is not so large in both welds. (2) The embrittleness in high heat input weld-bonds is mainly affected by the size of coarse grain rather than the microstructure. (3) The fracture toughness in high heat input weld-bonds can be improved by controlling the cooling rate from 800.deg.C to 500.deg.C rapidly.

  • PDF

원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계 (The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner)

  • 김동윤;박영환
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.