• Title/Summary/Keyword: mechanical joining strength

Search Result 422, Processing Time 0.026 seconds

Development of Solar Energy Concentration for Plastic Joining

  • Yarlagadda, P.;Kim, I.S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents development of a SEC(Solar Energy Concentration) utilizing the concentrated solar beam radiation for joining engineering thermoplastics such as Acrylonitrile/Butadiene/Styrene(ABS), Polycarbonate(PC) and Polymethylmethacrylate (PMMA). In addition, to study the joining of the materials, necessary experimentation with applying primer was performed. Tensile tests were conducted to determine the bond strength achieved at the specimen Joint interface. Microscopic examinations of the fractured joints were performed in order to analyze the overall bond quality. Finally, the results in terms of bond strength achieved at the joint interface and energy consumed in the process was compared with those obtained with similar thermoplastic joining technique utilizing microwave energy.

  • PDF

A Study on Laser Welding Characteristics of 1500MPa Grade Ultra High Strength Steel for Automotive Application (자동차용 1500MPa급 초고강도강의 레이저 용접 특성에 관한 연구)

  • Choi, Jin-Kang;Kim, Jong-Gon;Shin, Seung-Min;Kim, Cheol-Hee;Rhee, Se-Hun
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.19-26
    • /
    • 2010
  • In this study, fundamental experiment was conducted with various strength of UHSS (Ultra High Strength Steel) by $CO_2$ laser. And then, butt and lap joint laser welding with boron alloyed steel and Al-Si coated boron alloy steel have been done by changing laser beam feature, existence of gap and existence of coating layer to know welding characteristics of those materials. As a result, in case of fundamental experiment with various strength steel, hardening was found in the weld metal of all tested materials and softening was found at the heat affected zone of SGAFC 1180. In case of laser butt welding of UHSS, mechanical properties was improved by using small laser beam diameter and Al-Si coating layer caused fracture of weld metal. In case of laser lap welding of UHSS, Al-Si coating layer resulted in formation of intermetallic compound at the fusion boundary where fracture occurred. Al-Si coating layer caused lowering mechanical properties of weld metal.

  • PDF

A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching (마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구)

  • Gao, L.H.;Kang, G.S.;Lee, K.;Kim, B M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

Mechanical fastening and joining technologies to using multi mixed materials of car body (차체 소재 다변화에 따른 체결 및 접합기술)

  • Kim, Yong;Park, Ki-Young;Kwak, Sung-Bok
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.12-18
    • /
    • 2015
  • The ultimate goal of developing body is revealed the "lightweight" at latest EuroCarBody conference 2012 and the most core technology is joining process to make lightweight car body design. Accordingly, in this study, the car body assembly line for the assembly process applies to any introduction, particularly in the assembly of aluminum alloy and composite materials applied by the process for the introductory approached. Process were largely classified by welding (laser, arc, resistance, and friction stir welding), bonding (epoxy bonding) and mechanical fastening (FDS, SPR, Bolting and clinching). Applications for each process issues in the case and the applicable award was presented, based on the absolute strength of the test specimens and joining characteristics for comparative analysis were summarized. Finally, through this paper, we would tried to establish the characteristics of the joint for lightweight structure.

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).

Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries (자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성)

  • Kang, Minjung;Park, Taesoon;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.

The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly (차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향)

  • Lee, Hye-rim;Lee, So-jeong;Lim, Chang-young;Seo, Jong-dock;Kim, Mok-soon;Kim, Jun-ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

Characteristic of Mechanical Clinching for Al5052 to High-Strength Steels (Al5052 합금소재와 고장력강판의 이종재료 클린칭 접합특성)

  • Lee, Chan-Joo;Lee, Sang-Kon;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.997-1006
    • /
    • 2010
  • For manufacturing modern cars, so-called multi-materials, such as aluminum alloy with high-strength steels, are used. For obtaining such materials, a new joining method is required to achieve the multi-material design. Mechanical clinching is one of joining methods used to join the dissimilar materials. The objective of this study is to investigate the characteristics of mechanical clinching of Al5052 alloy to high-strength steels (SPFC440, 590, 780). Using FE-analysis and clinching experiment, the joinability of Al5052 alloy to high-strength steel is evaluated by geometrical shape of mechanical clinched joint, such as neck-thickness and undercut. Further, the joint strength is evaluated by performing a single-lap shear test. The upper high-strength steel SPFC780 was not clinched because of the necking of the upper sheet. The joint strength increased with increasing strength of the upper sheet. For the lower high-strength steel sheet, the joinability and joint strength decreased with increasing strength of the lower sheet.

Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone (십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성)

  • Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.