• Title/Summary/Keyword: mechanical intensity

Search Result 1,855, Processing Time 0.025 seconds

Stress Intensity Factors for Elliptical Arc Through Cracks in Mechanical Joints by Virtual Crack Closure Technique

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.182-191
    • /
    • 2002
  • The reliable stress intensity factor analysis is required for fracture mechanics design or safety evaluation of mechanical joints at which cracks often initiate and grow. It has been reported that cracks in mechanical joints usually nucleate as corner cracks at the faying surface of joints and grow as elliptical arc through cracks. In this paper, three dimensional finite element analyses are performed for elliptical arc through cracks in mechanical joints. Thereafter stress intensity factors along elliptical crack front including two surface points are determined by the virtual crack closure technique. Virtual crack closure technique is a method to calculate stress intensity factor using the finite element analysis and can be applied to non-orthogonal mesh. As a result, the effects of clearance on the stress intensity factor are investigated and crack shape are then predicted.

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method (II) - Mixed-Mode Stress Intensity Factor Analysis - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형: 관통균열의 음력확대계수 해석 (II) - 혼합모드 음력확대계수 해석 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Ryu, Myeong-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1671-1677
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks. The weight function method for elliptical arc through cracks at mechanical fastener holes has been developed and verified in the part I of this study. In part H, applying the weight function method, the effects of the amount of clearance on the mixed-mode stress intensity (actors are investigated and the change of crack shape is predicted from the analysis for various crack shapes. The stress intensity factors leer inclined crack are analyzed and critical angle at which mode I stress intensity factor becomes maximum is determined.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material (횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산)

  • Son, In-Ho;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

Stress Intensity Factors and Kink Angle of a Crack Interacting with a Circular Inclusion Under Remote Mechanical and Thermal Loadings

  • Lee, Saebom;Park, Seung-Tae;Earmme, Youn-Young;Chung, Dae-Youl
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1120-1132
    • /
    • 2003
  • A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular. integral equations for edge and temperature dislocation distribution functions are constructed and solved numeric-ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.

A Study on Fatigue Crack Growth and Stress Intensity Factors of Notch Materials (노치재의 피로균열진전과 응력확대계수 평가에 관한 연구)

  • Lee, Jong-Hyung;Lee, Sang-Young;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • Prediction of fatigue duration is attainable from the analysis of the growth rate of the fatigue crack, and the property of the fatigue crack growth is determined by the calculation of the stress intensity factor. And the evaluation of the stress intensity factor, K comes from the stress analysis of the vicinity of crack tip of the continuum. This study describes a simple method to decide the stress intensity factor for the small crack at the sharp edge notches. The proposed method is based on the similarities between elastic stress fields of the notch tip described by two parameters, the stress concentration factor K, the radius of arc of the notch. And it is applicable to the analysis of the semi-elliptical penetration cracks and the edge notches.

  • PDF

Evaluation of Stress Intensity Factor for A Partially Patched Crack Using an Approximate Weight Function

  • Kim, Jong-Ho;Hong, Seong-Gu;Lee, Soon-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1659-1664
    • /
    • 2003
  • A cracked plate with a patch bonded on one side was treated with a crack-bridging model using weight function: assuming continuous distribution of springs acting between th crack surfaces, the stress intensity factor of the patched crack was numerically obtained. Especially in the case of a patched crack subjected to residual non-uniform stress, the stress intensity factor was easily with the corresponding approximate weight function. This paper presented the stress intensity factors for a crack partially patched within a finite plate or a patched crack initiated from a notch.

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

Effects of Aspect and Area Ratio of Fiber on the Accuracy of Intensity Method in Measurement of Fiber Orientation-Angle Distribution (섬유배향각 분포측정에 있어서 농도법의 정밀도에 미치는 섬유종횡비와 면적비의 영향)

  • Lee, S.D.;Kim, H.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.953-959
    • /
    • 1998
  • To investigate accuracy of intensity method for measurement of the fiber orientation distribution, fiber orientation function is calculated by drawing simulation figures for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method are compared with the calculated values of fiber orientation function. The results show that measurement accuracy of the fiber orientation angle distribution by intensity method is affected by the fiber aspect ratio when the total length of oriented fiber is same. The average gradient of fiber orientation function is 0.94 for 1000mm of the total fiber length and is 0.93 for 2000 mm when the fiber aspect ratio is over 50. Measurement accuracy by intensity method is about 94% and the reliable data can be obtained by intensity method.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(III) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2326-2336
    • /
    • 1996
  • So most practical combustor is considered to the swirl flame, it is very important to examinate swirl flame structure and combustion characteristics. Recently, attention has been paid to the flame diagnostic by radical luminous intensity. For swirl flame structure and combustion characteristic, reverse flow boundary, temperature, ion current and radical luminous intensity were measured in the double-coaxial swirl combustor which was used principle of multi-annular combustor. This study had three experimental condition, S-type, C-type, SC-type. S-type and C-type flames were formed recirculation zone, but SC-type flame wasn't formed. C-type flame had two recirculation zone. The position with maximum value of ion current and CH-radical, temperature and OH-radical had similarity distribution almost. Therefore, it is possible that the macro structure of flame was measured by radical luminous intensity in the high intensity of turbulent combustion field which was formed by swirl.