• Title/Summary/Keyword: mechanical fixation

Search Result 114, Processing Time 0.026 seconds

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

Screw Fixation Techniques for Talar Neck Fractures (Anterior versus Posterior insertion) (거골 경부 골절의 나사못 고정 방향에 따른 결과 비교)

  • Shin, Dong-Eun;Yoon, Hyung-Ku;Choi, Woo-Jin;Lee, Yoon-Seok;Han, Seung-Chul
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Purpose: To compare the clinical and radiological results between the anterior and posterior screw fixation for the treatment of talar neck fracture. Materials and Methods: Among 30 patients who received surgical treatment for talar neck fracture from 2001 to 2008. Twenty-seven patients with a follow-up period of more than 1 year were divided into two groups. Twelve patients were treated with anterior screw fixation and 15 patients with posterior approaches. We analyzed preoperative, postoperative and follow-up radiographs. Clinical results were evaluated by Hawkins criteria. Results: The posteriorly inserted screws were placed across the more central portion of the talar neck and perpendicular to the plane of fracture (p<0.05). There were no difference in clinical results, the duration of union, and complications including avascular necrosis between two groups. However, 2 patients complained of pain around the talonavicular joint in the anterior insertion group. Conclusion: Although the clinical results were good irrespective of insertion methods, the posterior approach of screw fixation for talar neck fractures allows for a better mechanical advantage than anterioly placed screws. This may allow early motion with a reduced risk of failure of fixation or of displacement of the fracture.

Histologic Characteristics and Mechanical Properties of Bovine Pericardium Treated with Decellularization and ${\alpha}$-Galactosidase: A Comparative Study

  • Min, Byoung-Ju;Kim, Yong Jin;Choi, Jae-Woong;Choi, Sun Young;Kim, Soo Hwan;Lim, Hong-Gook
    • Journal of Chest Surgery
    • /
    • v.45 no.6
    • /
    • pp.368-379
    • /
    • 2012
  • Background: Bioprostheses for cardiovascular surgery have limitations in their use following as calicification. ${\alpha}$-galactosidase epitope is known as a stimulant of immune response and then shows a progressing calcification. The objective of this study was to evaluate histologic characteristics and mechanical properties of decellularization and treated with ${\alpha}$-galactosidase. Materials and Methods: Bovine pericardial tissues were allocated into three groups: fixation only with glutaraldehyde, decellularization with sodium dodesyl sulfate and decellularization plus treatment with ${\alpha}$-galactosidase. We confirmed immunohistological characteristics and mechanical properties as fatigue test, permeability test, compliance test, tensile strength (strain) test and thermal stability test. Results: Decellularization and elimination of ${\alpha}$-gal were confirmed through immunohistologic findings. Decellularization had decreased mechanical properties compared to fixation only group in permeability (before fatigue test p=0.02, after fatigue test p=0.034), compliance (after fatigue test p=0.041), and tensile strength test (p=0.00). The group of decellularization plus treatment with ${\alpha}$-galactosidase had less desirable mechanical properties than the group of decellularization in concerns of permeability (before fatigue test p=0.043) and strain test (p=0.001). Conclusion: Favorable decellularization and elimination of ${\alpha}$-gal were obtained in this study through immunohistologic findings. However, those treatment including decellularization and elimination of ${\alpha}$-gal implied the decreased mechanical properties in specific ways. We need more study to complete appropriate bioprosthesis with decellularization and elimination of ${\alpha}$-gal including favorable mechanical properties too.

Comparison of Mechanical Stability between Fibular Free Flap Reconstruction versus Locking Mandibular Reconstruction Plate Fixation

  • Chung, Jae-Hyun;Yoon, Eul-Sik;Park, Seung-Ha;Lee, Byung-Il;Kim, Hyon-Surk;You, Hi-Jin
    • Archives of Craniofacial Surgery
    • /
    • v.15 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Background: The fibular free flap has been used as the standard methods of segmental mandibular reconstruction. The objective of mandibular reconstruction not only includes restored continuity of the mandible but also the recovery of optimal function. This paper emphasizes the advantage of the fibular free flap reconstruction over that of locking mandibular reconstruction plate fixation. Methods: The hospital charts of all patients (n=20) who had a mandibular reconstruction between 1994 and 2013 were retrospectively reviewed. Eight patients had plateonly fixation of the mandible, and the remaining 12 had vascularized fibular free flap reconstruction. Complications and outcomes were reviewed and compared between the 2 groups via statistical analysis. Results: Overall complication rates were significantly lower in the fibular flap group (8.3%) than in the plate fixation group (87.5%; p =0.001). Most (7/8) patients in the plate fixation group had experienced plate-related late complications, including plate fracture or exposure. In the fibular flap group, no complications were observed, except for a single case of donor-site wound dehiscence (1/12). Conclusion: The fibular free flap provides a more stable support and additional soft tissue support for the plate, thereby minimizing the risk of plate-related complications. Fibular free flap is the most reliable option for mandibular reconstruction, and we believe that the flap should be performed primarily whenever possible.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.

Early Failure of Cortical-Bone Screw Fixation in the Lumbar Spinal Stenosis (요추부 협착에서의 피질골 궤도 나사못 고정의 초기 실패 사례에 대한 고찰)

  • Kwon, Ji-Won;Kim, Jin-Gyu;Ha, Joong-Won;Moon, Seong-Hwan;Lee, Hwan-Mo;Park, Yung
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • Purpose: Pedicle screw insertion has been traditionally used as a surgical treatment for degenerative lumbar spine disease. As an alternative, the cortical-bone trajectory screw allows less invasive posterior lumbar fixation and excellent mechanical stability, as reported in several biomechanical studies. This study evaluated the clinical and radiological results of a case of early failure of cortical-bone screw fixation in posterior fixation and union after posterior decompression. Materials and Methods: This study examined 311 patients who underwent surgical treatment from 2013 to 2018 using cortical orbital screws as an alternative to traditional pedicle screw fixation for degenerative spinal stenosis and anterior spine dislocation of the lumbar spine. Early fixation failure after surgery was defined as fixation failure, such as loosening, pull-out, and breakage of the screw on computed tomography (CT) and radiographs at a follow-up of six months. Results: Early fixation failure occurred in 46 out of 311 cases (14.8%), screw loosening in 46 cases (14.8%), pull-out in 12 cases (3.9%), and breakage in four cases (1.3%). An analysis of the site where the fixation failure occurred revealed the following, L1 in seven cases (15.2%), L2 in three cases (6.5%), L3 in four cases (8.7%), L4 in four cases (8.7%), L5 in four cases (8.7%), and S1 in 24 cases (52.2%). Among the distal cortical bone screws, fixation failures such as loosening, pull-out, and breakage occurred mainly in the S1 screws. Conclusion: Cortical-bone trajectory screw fixation may be an alternative with comparable clinical outcomes or fewer complications compared to conventional pedicle screw fixation. On the other hand, in case with osteoporosis and no anterior support structure particularly at L5-S1 fusion sites were observed to have result of premature fixation failures such as relaxation, pull-out, and breakage.

Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes (증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구)

  • Seong Bin Kim;Dong Kyun Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

Lateral Lumbar Interbody Fusion and in Situ Screw Fixation for Rostral Adjacent Segment Stenosis of the Lumbar Spine

  • Choi, Young Hoon;Kwon, Shin Won;Moon, Jung Hyeon;Kim, Chi Heon;Chung, Chun Kee;Park, Sung Bae;Heo, Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.755-762
    • /
    • 2017
  • Objective : The purpose of this study is to describe the detailed surgical technique and short-term clinical and radiological outcomes of lateral lumbar interbody fusion (LLIF) and in situ lateral screw fixation using a conventional minimally invasive screw fixation system (MISF) for revision surgery to treat rostral lumbar adjacent segment disease. Methods : The medical and radiological records were retrospectively reviewed. The surgery was indicated in 10 consecutive patients with rostral adjacent segment stenosis and instability. After the insertion of the interbody cage, lateral screws were inserted into the cranial and caudal vertebra using the MISF through the same LLIF trajectory. The radiological and clinical outcomes were assessed preoperatively and at 1, 3, 6, and 12 months postoperatively. Results : The median follow-up period was 13 months (range, 3-48 months). Transient sensory changes in the left anterior thigh occurred in 3 patients, and 1 patient experienced subjective weakness; however, these symptoms normalized within 1 week. Back and leg pain were significantly improved (p<0.05). In the radiological analysis, both the segmental angle at the operated segment and anterior disc height were significantly increased. At 6 months postoperatively, solid bony fusion was confirmed in 7 patients. Subsidence and mechanical failure did not occur in any patients. Conclusion : This study demonstrates that LLIF and in situ lateral screw fixation may be an alternative surgical option for rostral lumbar adjacent segment disease.

RIGID FIXATION AND SPACE MAINTENANCE BY TITANIUM MESH FOR RECONSTRUCTION OF THE PREMAXILLA (상악골 전방 결손부 재건 시 견고 고정과 공간 유지로 사용된 타이타니움 메쉬의 임상 예)

  • Lee, Eun-Young;Kim, Kyoung-Won;Choi, Hee-Won;Koh, Myoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • Reconstruction of defect in the anterior part of the maxilla to enable implant placement or prothesis is a complicated treatment due to the anatomical position and lack of soft tissues. Two cases are presented in which autogenous iliac PMCB(particulate marrow and cancellous bone) with titanium mesh were used for premaxilla reconstruction and alveolar bone repair of the anterior maxillas prior to denture and implants fixation respectively. Cancellous bone from the anterior iliac crest was compressed and placed against a titanium mesh fixed to the bone of palate in a patient with severe defect of the anterior maxilla. There were no problem in the healing, and the anterior maxillas of two patients had increased height and width during the initial healing and remodeling. The clinical reports describe the use of titanium mesh for reconstruction of premaxilla. Autogenous bone grafts were harvested from the iliac crest and were loaded on a titanium mesh that were left in the patient's maxilla for 6 months before they were removed respectively. The radiographic analysis demonstrated that a 10mm vertical ridge augmentation had been achieved. In guided bone regeneration, the quantity of bone regenerated under the barrier has been demonstrated to be directly related to the amount of the space under the membrane. This space can diminish as a result of membrane collapse. To avoid this problem which involved the use of a titanium mesh barrier to protect the regenerating tissues and to achieve a rigid fixation of the bone segments, were used in association with autologous bone in 2 cases. The aim of this study was to evaluate the capability of a configured titanium mesh to serve as a mechanical and biologic device for restoring a vertically defected premaxilla.