• 제목/요약/키워드: mechanical deterioration

Search Result 464, Processing Time 0.024 seconds

Variation of Eddy Current Signal According to the Defect Shape, Defect Depth and Radial Load in CFRP Tube (CFRP 튜브의 결함형상.결함깊이.레이디얼 하중에 따른 와전류 신호의 변화)

  • 송삼홍;안형근;이정순;오동준;송일;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2004-2011
    • /
    • 2004
  • The applicability of the ultrasonic C-scan inspection is restricted due to the deterioration of mechanical properties of specimen during the test. Therefore, the aim of this research is applied to Eddy Current (EC) test substitute for the C-scan inspection in CFRP tube containing defects. This research is to evaluate the EC signals for the inspection of CFRP tube containing various circular hole defects (20% to 100% depth to the specimen thickness) using the unloading specimen and radial loading specimen. This study was considered the following points; 1) Analysis of EC signals for the inspection of saw-cut defect and circular hole defect, 2) The evaluation of defect depths and EC signals relationship. 3) Variation of EC signal owing to the radial load. In conclusions, the high frequency such as 300∼500 kHz made it possible to the inspection of 40% to 100% defects. Particularly, in case of 20% defect, the EC signal was not detected due to the noise of micro-crack and delamination. While the depth of the hole defects were decreasing, the difference of the phase angle between unloading specimen and radial loading specimen was gradually increasing.

Physical and Mechanical Characteristics of Phellodendron amure Ruprecht (황벽나무의 물리·역학적 특성)

  • Kim, Hyun-Woo;Byeon, Hee-Seop;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.519-524
    • /
    • 2017
  • Physical, mechanical and deteriorating properties of Phellodendron amure were investigated. Air dried density located indoor was 0.41 but $0.43g/cm^3$ outdoor. In oven dry shrinkage, T/R ratio for located indoor was 1.40 but 1.32 outdoor. Hygroscopic property at $40^{\circ}C$ with 90% relative humidity was 16.30% for indoor and 15.80% for outdoor. Compressive strength for outdoor conditioned sample was 43.81 MPa but 40.33 MPa for indoor conditioned. Also bending strenght for outdoor conditioned was 84.63 MPa but 68.80 MPa for indoor conditioned. Impact strength was 3.43 and $4.00J/cm^2$ indoor and outdoor, respectively. Hardness at cross-section was 47.92 and 49.20 MPa indoor and outdoor, respectively. With one-year conditioning at indoor or outdoor, there was no significantly different in strength properties, which came from strong resistance for deterioration. Also Phellodendron amure wood showed dimensionally stable raw material based on low T/R ratio.

The Effect of Remelting Cycles and Its Carbon Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr 기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 재용해 횟수와 탄소 함량의 영향)

  • Lee, Byung-Chul;Kim, Sung-Gyoo;Park, Bong-Gyu;Park, Heung-Il;Park, Hwa-Soon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.94-99
    • /
    • 2014
  • A commercially used Zr-based amorphous alloy was recycled and the effects of introducing carbon during recycling on the glass forming ability and mechanical properties of the alloy were investigated. The initial carbon content used in this study was 229ppm. The carbon content was gradually increased as the number of recycling iterations was increased and after the $4^{th}$ recycling it rapidly increased. As return scrap was recycled, polygonal particles precipitated, and they were identified as ZrC. The amount of the precipitates also increased with recycling. Tg, Tx and ${\Delta}T$ of the base alloy were 615 K, 696 K and 81 Kr respectively and they changed to 634 K, 706 K and 72 K after the $10^{th}$ recycling. The decrease of the ${\Delta}T$ value indicates deterioration of the glass forming ability. Hardness was not changed during three iterations of recycling but after the $4^{th}$ recycling it significantly increased. This is ascribed to an increase of amount of the hard particles, namely ZrC.

Characteristic of Underfill with Various Epoxy Resin (에폭시 수지에 따른 언더필의 특성에 관한 연구)

  • Noh, Bo-In;Lee, Jong-Bum;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.39-45
    • /
    • 2006
  • This study was investigated the thermal properties of underfill with various epoxy resins using thermal analysis methods such as differential scanning calorimetry (DSC), thermo gravimetry analysis (TGA), dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). And, the adhesion strength of the underfills/FR-4 substrate was evaluated. The glass transition temperature (Tg) of underfill which was composed the cycolaliphatic epoxy resin was lower than that of underfill which was not composed the cycolaliphatic epoxy resin. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The coefficient of thermal expansion (CTE) of underfill which was composed the cycolaliphatic epoxy resin was higher than that of underfill which was not composed the cycolaliphatic epoxy resin. The excessive curing temperatures caused a weak boundary layer of epoxy resin, which resulted in a deterioration of mechanical properties in the epoxy resin and thus led to poor adhesion property between the underfill/FR-4 substrate.

  • PDF

Application of Nylon Fiber for Performance Improvement of Recycled Coarse Aggregate Concrete (순환 굵은골재 사용 콘크리트의 성능향상을 위한 나일론 섬유의 적용성 연구)

  • Lee, Seung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.785-792
    • /
    • 2017
  • In recent times, the lack of good quality natural aggregate has led to the alternative use of recycled aggregate. However, the adhered mortars in recycled aggregate lower the performance of the concrete, such as by reducing its strength and causing deterioration and cracking. In this study, the effects of nylon fiber (NF) on the mechanical and durable performance of recycled coarse aggregate concrete (RAC) were experimentally examined. Concrete specimens with natural coarse aggregate (NA) or RA were produced by adding 0, 0.6 and $1.2kg/m^3$ of NF. Various mechanical properties and the durability of the RAC were measured and compared with those of the NAC. In addition, in order to observe the hydrates and ITZ, SEM observations were made of the 28-day concrete samples. From the test results, as expected, it was found that the RAC exhibited lower performance than the NAC. However, the addition of NF to the concrete was effective in significantly enhancing the performance of the RAC due to the bridge effect of the NF.

Clinical Analysis of Reoperation for Prosthetic Valve Replacement Report of 12 cases (인공판막 치환수술 재수술에 대한 임상적 고찰 -12예보고-)

  • 장진우;이연재
    • Journal of Chest Surgery
    • /
    • v.30 no.4
    • /
    • pp.390-395
    • /
    • 1997
  • Between May 1986 and May 1996, 269 patients underwent prosthetic valve replacement. A bioprosthetic valve was replaced in 70 cases and mechanical valve was replaced in 232. Of this 12 patients performed reoperations for replacement, and the mean interval between primary valve operation and reoperation was 87.6 months for mitral valve and )7.7 months for aortic valve. There were 10 women and 2 me , agcd from 22 to 68 years(mean 45). A bioprosthetic valve was implanted in 8 cases and a mechanical valve was implanted in 4 cases for initial operation. llidications for reoperation were structural deterioration in 5 cases(42%), valve thrombus in 5 cases(42%) and endocarditis in 2 cases(17%). Operations performed included 3 aortic valve replacements(25%), 9 mitral valve replacements(75%). Wc used mechanical valve in llcases(92%) and tissue valve in 1 case(8%) for reoperation. There were 2 early operative deaths because of valve detachment and of acute respiratory failure. Among ten survivor's, there were no late deaths with follow up of 35.8 months.

  • PDF

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination (IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF