• Title/Summary/Keyword: mechanical couplings

Search Result 33, Processing Time 0.017 seconds

Design and Dynamic Behavior Prediction of a 4-DOF Piping Joint (4-자유도 배관 관절의 설계 및 동적 거동 예측)

  • Lee, Yunyong;Kang, Hwankook;Lee, Jong Rim;Lim, Seungchul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.298-307
    • /
    • 2016
  • In the building process of FPSOs(floating production, storage and offloading units) is the increasing demand of high performance piping joints that can be installed on its turret system and maintain smooth and long-term flow of ultra-high pressure crude oil, being subjected to external excitations such as wind and wave on the sea. Following such a trend, in this paper, a new-type piping joint of four effective degrees of freedom has been designed, and its dynamic characteristics predicted through mathematical modeling and computer simulations. Moreover, via an example it was shown how the yaw motion in particular can be independently controlled for future durability test despite strong kinetic couplings.

Accuracy of a direct estimation method for equivalent material properties of 1-3 piezocomposites (1-3형 압전복합재료 등가물성 직접 추출 기법의 정확도 분석)

  • Eunghwy Noh;Donghyeon Kim;Hyeongmin Mun;Woosuk Chang;Hongwoo Yoon;Seonghun Pyo;Kyungseop Kim;Yo-Han Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.377-387
    • /
    • 2023
  • This paper presents accuracy of a method that directly estimates equivalent properties of a 1-3 piezocomposite for modeling it into the single phase homogeneous piezomaterial. This direct estimation method finds individual components of a material property matrix based on the piezoelectric constitutive equations, which represent mechanical and electrical behaviors and their couplings. Equivalent properties on a single 1-3 piezocomposite hydrophone are derived, and their accuracy depending on pairing of the constitutive equations is investigated by comparing them with finite element analysis for the whole domain. The accuracy is related to elastic characteristics of a matrix polymer, and the error is analyzed so that some guidelines for correct estimation are suggested. Fidelity of estimated properties and equivalent modeling is shown in a stave scale including hydrophones and surrounding acoustic structures as well, and reduced computational cost is verified.

Assessment of cold-formed steel screwed beam-column conections: Experimental tests and numerical simulations

  • Merve Sagiroglu Maali;Mahyar Maali;Zhiyuan Fang;Krishanu Roy
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.515-529
    • /
    • 2024
  • Cold-formed steel (CFS) is a popular choice for construction due to its low cost, durability, sustainability, resistance to high environmental and seismic pressures, and ease of installation. The beam-column connections in residential and medium-rise structures are formed using self-drilling screws that connect two CFS channel sections and a gusset plate. In order to increase the moment capacity of these CFS screwed beam-column connections, stiffeners are often placed on the web area of each single channel. However, there is limited literature on studying the effects of stiffeners on the moment capacity of CFS screwed beam-column connections. Hence, this paper proposes a new test approach for determining the moment capacity of CFS screwed beam-column couplings. This study describes an experimental test programme consisting of eight novel experimental tests. The effect of stiffeners, beam thickness, and gusset plate thickness on the structural behaviour of CFS screwed beam-column connections is investigated. Besides, nonlinear elasto-plastic finite element (FE) models were developed and validated against experimental test data. It found that there was reasonable agreement in terms of moment capacity and failure mode prediction. From the experimental and numerical investigation, it found that the increase in gusset plate or beam thickness and the use of stiffeners have no significant effect on the structural behaviour, moment capacity, or rotational capacity of joints exhibiting the same collapse behaviour; however, the capacity or energy absorption capacities have increased in joints whose failure behaviour varies with increasing thickness or using stiffeners. Besides, the thickness change has little impact on the initial stiffness.