• Title/Summary/Keyword: mechanical analysis

Search Result 21,934, Processing Time 0.041 seconds

Electro-mechanical field analysis of Brushless DC motor due to the driving methods (구동방식에 따른 브러시리스 직류 전동기의 기전 연성 특성 해석)

  • Chang J.H.;Jang G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.659-662
    • /
    • 2003
  • This paper analyzes the electro-mechanical characteristics of the spindle motor in a computer hard disk drive due to the trapezoidal and sinusoidal driving methods. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation for the analysis of the magnetic field. Mechanical motion of a rotor is calculated by solving Newton-Euler equation. Electro-mechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force.

  • PDF

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy

  • Choi, Jindoo;Ryu, Sung Yoon;Kwon, Won Sik;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.454-460
    • /
    • 2013
  • We present qualitative and quantitative component analyses on compound explosives via Terahertz time-domain spectroscopy (THz-TDS) based on a combination of wavelet thresholding and wavelength selection. Despite its importance, the field of signal processing of THz signals of compound plastic explosives is relatively unexplored. In this paper, experiment results from explosives Composition B-3 and Pentolite are newly presented, suggesting a novel signal processing procedure for in situ compound explosives detection. The proposed signal processing method demonstrates effective component analysis even in noisy and humid environments, showing significant decrease in component concentration percentage error of approximately 22.7% for Composition B-3 and 48.8% for Pentolite.

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

  • Park, Sang-Shin;Park, Se Myung;Jung, Jongkyo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.250-254
    • /
    • 2013
  • In this research, the linear electrical generator in wave energy farm utilizing resonance power buoy system is studied. The mechanical resonance characteristics of the buoy and the wave are analyzed to maximize the kinetic energy in a relatively small wave energy area where WRPS is operated. In this research, we chose an analog model of the linear electrical generator of which size is one-hundredth of an actual size of it in WPRS (Wave energy farm utilizing Resonance Power buoy System) prior to verifying the characteristics of actual model of linear electrical generator in WRPS. In addition, the finite element analysis is conducted using commercial electromagnetic analysis software named MAXWELL to examine the electric characteristic of linear generator. Finally, for the verification of dynamic and electric characteristics of linear generator, the prototype was manufactured and the experiments to measure the displacement and the output electric power were performed.

A new constitutive model to predict effective elastic properties of plain weave fabric composites

  • Mazaheri, Amir H.;Taheri-behrooz, Fathollah
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.651-659
    • /
    • 2021
  • In this study, a new constitutive model has been developed to predict the elastic behavior of plain weave textile composites, using the finite element (FE) method. The geometric conditions and basic assumptions of this model are based on the basics of a continuum theory developed for the plane curved composites. In this model, the mechanical properties of the weave region and pure matrix region is calculated separately and then imported for the FE analysis. This new constitutive model is used to implement the mechanical properties of weave region in the representative volume element (RVE). The constitutive relations are implemented as user-material subroutine code (UMAT) in ABAQUS® FE software. The results of FE analysis have been compared with experimental results and other data available in the literature. These comparisons confirmed the capability of the presented model for the prediction of effective elastic properties of plain weave fabric composites.

A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle (초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가)

  • Choi, S.G.;Oh, J.S.;Jeong, H.S.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors

  • Moon, Keun-Hwan;Gang, Jin-Hyuk;Kim, Dong-Seong;Kim, Jin-Kon;Choi, Joo-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.565-578
    • /
    • 2016
  • A probabilistic based systems approach is addressed in this study for the reliability prediction of solid rocket motors (SRM). To achieve this goal, quantitative Failure Modes, Effects and Criticality Analysis (FMECA) approach is employed to determine the reliability of components, which are integrated into the Fault Tree Analysis (FTA) to obtain the system reliability. The quantitative FMECA is implemented by burden and capability approach when they are available. Otherwise, the semi-quantitative FMECA is taken using the failure rate handbook. Among the many failure modes in the SRM, four most important problems are chosen to illustrate the burden and capability approach, which are the rupture, fracture of the case, and leak due to the jointed bolt and O-ring seal failure. Four algorithms are employed to determine the failure probability of these problems, and compared with those by the Monte Carlo Simulation as well as the commercial code NESSUS for verification. Overall, the study offers a comprehensive treatment of the reliability practice for the SRM development, and may be useful across the wide range of propulsion systems in the aerospace community.

Design of optimal fiber angles in the laminated composite fan blades (적층 복합재 팬-블레이드의 적층각도 최적화 설계)

  • Jeong, Jae-Yeon;Jo, Yeong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.