• 제목/요약/키워드: mechanical alloying/milling

검색결과 167건 처리시간 0.017초

잔류 자성원소 검출에 의한 금속간화합물의 기계적 합금화 공정에서의 합금화 정도 해석 (Determination of the Degree of Alloying by Detection of Residual Ferromagnetic Elements for Intermetallic Alloys Processed by Mechanical Alloying)

  • 어순철
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.561-566
    • /
    • 2003
  • Mechanical alloying(MA) process using elemental powders followed by hot pressing has been applied to some intermetallic alloy system containing ferromagnetic elements, such as NiAl and $FeSi_2$. A modified thermogravimetric analysis (TGA) technique was used to investigate the degree of alloying in milled powders and hot consolidated specimens as well as heat-treated bulk specimens. It is shown that the measurement of Curie temperatures in MA intermetallic powders and consolidated specimens containing ferromagnetic components, when determined as a function of milling and heat treatment parameters, can give some insight into the progress and mechanism of alloying.

기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가 (Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics)

  • 박성준;이상조
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

GaSe및 GaTe계의 기계적 합금화 거동 (Mechanical Alloying of GaSe and GaTe Systems)

  • 최정보;안중호
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.338-342
    • /
    • 2014
  • In the present work, we investigated the mechanical alloying of binary Ga-Se(1:1) and Ga-Te(1;1) sysyems. The high-energy ball-milling was performed at $40^{\circ}C$ where one of constituents (Ga) is molten state. The purpose of the work was to see whether reactions between constituent elements are accelerated by the presence of a liquid phase. During the ball-milling, the liquid Ga phase completely disappeared and the resulting powders consist of nanocrystalline grain of ~20 nm with partly amorphized phases. However, no intermetallic compounds formed in spite of the presence of the liquid phases which has much higher diffusivity than solid constituents. By subsequent heat-treatments, the intermetallic compounds such as GaSe and GaTe formed at relatively low temperatures. The formation temperature of theses compound was much lower than those predicted by equilibrium phase diagram. The comparison of the ball-milled powders with un-milled ones indicated that the easy formation of intermetallic compound or allying occurs at low temperatures.

망간황화물형성에 미치는 기계적합금화 공정변수의 영향 (The Effects of Mechanical Alloying Conditions on the Formation of Mn-sulfide)

  • 안인섭;박동규;정광철
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.253-257
    • /
    • 2001
  • The effects of mechanical alloying conditions on the formation of Mn-sulfide powders were analyzed. Impeller rotating speed, lubricant coating and added amounts of process control agent(stearic acid) were selected as a process control factor. MnS compounds are synthesized in 3 hours by mechanical alloying at the alternative milling condition. Discontinuous rotating speed of 1200rpm for 4 minutes and 1000rpm for 1 minute shows more effects on the compound formation of MnS. After coating of lubricant on the wall, elementary Mn and sulfur were partially remained by mechanical alloying. The friction effects of the wall and grinding media on the powders are significantly important to form the compound of MnS.

  • PDF

기계적 합금화법으로 제조된 고온 수전해용 Ni/YSZ 전극의 미세구조 특성 (Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying)

  • 박근만;채의석;홍현선;추수태
    • 한국재료학회지
    • /
    • 제14권10호
    • /
    • pp.743-748
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.

Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries

  • Liu, Xiaojing;Ahn, Hyo-Jun;Ahn, In-Shup
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.182-188
    • /
    • 2012
  • In this study, fine cathode materials $Ni_3S_2$ and $NiS_2$ were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/$Ni_3S_2$ and Na/$NiS_2$ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.

Mechanical Alloying에 의한 비정질 Ti40Cu40Ni10Al10 합금의 형성 및 열적특성 (Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying)

  • 김현구
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.363-369
    • /
    • 2009
  • The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.

PbTe 열전재료의 기계적 합금화 거동 (Mechanical alloying behavior of PbTe thermoelectric materials)

  • 오태성;최재식;현도빈
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.223-231
    • /
    • 1995
  • 열전발전용 재료인 PbTe의 밀링 시간, 볼과 분말의 무게비에 따른 기계적 합금화 거동을 연구하였다. Pb와 Te 분말을 볼과 분말의 무게비 2 : 1에서 2분간 기계적 합금화 함으로써 PbTe 금속간 화합물의 형성이 완료되었다. 밀링 공정중 vial 표면 온도의 in situ 측정에서 기계적 합금화에 의한 PbTe 금속간 화합물의 형성이 분말 계면에서의 확산 공정보다는 합금화 반응이 자발적으로 전파하는 자전 반응에 의하여 이루어지는 것을 알 수 있었다. 기계적 합금화로 제조한 PbTe 합금분말의 격자상수는 0.6462nm로 용해 및 분쇄법으로 제조한 PbTe 분말에서 보고된 값인 0.6459nm와 잘 일치하였으며, 밀링 시간의 증가 및 볼과 분말의 무게비의 변화에 의하여 변하지않았다.

  • PDF

다이아몬드 공구용 코발트계 합금 결합제의 제조 및 기계적 성질 (Fabrication Process and Mechanical Properties of Co-based Metal Bond in Diamond Impregnated Tools)

  • 이기선;정승부
    • 한국재료학회지
    • /
    • 제10권8호
    • /
    • pp.532-539
    • /
    • 2000
  • Diamond 공구용 Co-0.5C-(15∼20)Cr-20Ni-8W-(2∼7)Fe 합금 결합제를 볼밍링(ball-milling)법과 기계적 합금화(mechanical alloying) 법으로 합성하였다. stearic acid의 첨가 유무에 상관없이 Co-0.5C-(15∼20)Cr-20Ni-8W-(2∼7)Fe 합금의 경우 6시간 동안 합금화된 금속 분말에서 미세 접합(micro welding) 형상이 균일하게 관찰되었다. stearic acid를 첨가하지 않을 때는 부분적으로 조대화된 분말이 형성되었으나 2% 첨가한 경우 미세하고 판상의 분말이 얻어졌다. stearic acid가 첨가된 복합분말을 열간 압축하여 기계적 성질을 평가한 결과 굽힘강도 1100MPa, 경도 46H(sub)Rc의 특성을 나타냈다.

  • PDF

기계적 합금화법에 의해 제조된 Cu-l0wt%W 소결재의 미세조직 및 물성 (Microstructure and Physical Properties of Cu-l0wt%W Sintered Material Fabricated by Mechanical Alloying Method)

  • 김보수
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.167-173
    • /
    • 1994
  • Cu-10wt%W composite powders have been manufactured by a high energy ball milling technique. The composite powders were pressed at 250 MPa and sintered in a dry hydrogen at 103$0^{\circ}C$ for 4 hours. After sintering, Cu-10wt%W composite materials were forged. And the arc-resistance of forged materials which have the same relative density of 94% has been tested. Composite particles, i.e. tungsten particles distributed homogeneously in the copper matrix, was formed after 480 min mechanical alloying. Densities of these sintered materials were ranged from 74 to 84%. Densification degree was due to the formation of composite powders. As the mechanical alloying time increased, the hardness was increased and tungsten particle size was decreased. Arc loss of the forged specimens was decreased as increasing the mechanical alloying time.

  • PDF