• Title/Summary/Keyword: mec A

Search Result 252, Processing Time 0.028 seconds

Antibiograms and Molecular Subtypes of Methicillin-Resistant Staphylococcus aureus in Local Teaching Hospital, Malaysia

  • Thong, Kwai Lin;Junnie, June;Liew, Fong Yin;Yusof, Mohd Yasim;Hanifah, Yasmin A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1265-1270
    • /
    • 2009
  • The objectives of this study were to determine the antibiotypes, SCCmec subtypes, PVL carriage, and genetic diversity of MRSA strains from a tertiary hospital. Sixty-six MRSA strains were selected randomly (2003, 2004, and 2007) and tested for the Panton-Valentine leukocidin gene, mecA gene, and SCCmec type via a PCR. The antibiograms were determined using a standard disc diffusion method, and the genetic diversity of the isolates was determined by PFGE. Thirty-four antibiograms were obtained, with 55% of the 66 strains exhibiting resistance to more than 4 antimicrobials. All the isolates remained susceptible to vancomycin, and low resistance rates were noted for fusidic acid (11%), rifampicin (11%), and clindamycin acid (19%). The MRSA isolates that were multisensitive (n=12) were SCCmec type IV, whereas the rest (multiresistant) were SCCmec type III. Only two isolates (SCCmec type IV) tested positive for PVL, whereas all the isolates were mecA-positive. The PFGE was very discriminative and subtyped the 66 isolates into 55 pulsotypes (F=0.31-1.0). The multisensitive isolates were distinctly different from the multidrug-resistant MRSA. In conclusion, no vancomycin-resistant isolate was observed. The Malaysian MDR MRSA isolates were mostly SCCmec type III and negative for PVL. These strains were genetically distinct from the SCCmec type IV strains, which were sensitive to SXT, tetracycline, and erythromycin. Only two strains were SCCmec IV and PVL-positive. The infections in the hospital concerned were probably caused by multiple subtypes of MRSA.

A modified output error method and its application on an air accident

  • Imado, Fumiaki;Koyama, Yasumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.169-172
    • /
    • 1996
  • A modified output error method developed by the authors are presented, and an example of its application on an air accident is shown. In order to obtain the aerodynamic coefficients of an aircraft, the maximum likelihood method and the output error method are often employee However, in the case of an air accident, there is only one flight data available. The newly devised modified output error method by authors seems to have shown fine performance. By employing this method and processing the flight data, unstational aerodynamic coefficients are obtained. The contradiction between the recorded flight data and the circumstantial evidence was reasonably explained.

  • PDF

Extinguishing Concentration of Inert Gases in Heptane Pool Fires (헵탄 풀화재에서 불활성기체 소화농도)

  • Jung, Tae-Hee;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • The coflow velocity effect on the minimum extinguishing concentration(MEC) was investigated experimentally in heptane cup-burner flames. Various inert gases($N_2$, Ar, $CO_2$, He) were added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the MECs were increased with increasing coflow velocity for most inert gases except helium, but the higher coflow velocity induced the lower burning rates of heptane. This indicated that the increase of coflow velocity resulted in the decrease of fuel velocity evaporated from fuel surface, and hence the stain rate on the reaction zone was also decreased. In the case of helium as a additive, the extinguishing concentration was independent of the coflow velocity because the heat conductivity was ten times larger than the other inert gases and flow effect by a strain rate might be compensated for heat loss to the surroundings.

An Analytical and Experimental Study of Binary Image Normalization for Scale Invariance with Zernike Moments

  • Kim, Whoi-Yul
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.146-155
    • /
    • 1997
  • In order to achieve scale- and rotation-invariance in recognizing unoccluded objects in binary images using Zernike moment features, an image of an object has often been normalized first by its zeroth-order moment (ZOM) or area. With elongated objects such as characters, a stroke width varies with the threshold value used, it becomes one or two pixels wider or thinner. The variations of the total area of the character becomes significant when the character is relatively thin with respect to its overall size, and the resulting normalized moment features are no longer reliable. This dilation/erosion effect is more severe when the object is not focused precisely. In this paper, we analyze the ZOM method and propose as a normalization method, the maximum enclosing circle (MEC) centered at the centroid of the character. We compare both the ZOM and MEC methods in their performance through various experiments.

  • PDF

Design of CPS Architecture for Ultra Low Latency Control (초저지연 제어를 위한 CPS 아키텍처 설계)

  • Kang, Sungjoo;Jeon, Jaeho;Lee, Junhee;Ha, Sujung;Chun, Ingeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.227-237
    • /
    • 2019
  • Ultra-low latency control is one of the characteristics of 5G cellular network services, which means that the control loop is handled in milliseconds. To achieve this, it is necessary to identify time delay factors that occur in all components related to CPS control loop, including new 5G cellular network elements such as MEC, and to optimize CPS control loop in real time. In this paper, a novel CPS architecture for ultra-low latency control of CPS is designed. We first define the ultra-low latency characteristics of CPS and the CPS concept model, and then propose the design of the control loop performance monitor (CLPM) to manage the timing information of CPS control loop. Finally, a case study of MEC-based implementation of ultra-low latency CPS reviews the feasibility of future applications.

A reinforcement learning-based network path planning scheme for SDN in multi-access edge computing

  • MinJung Kim;Ducsun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.16-24
    • /
    • 2024
  • With an increase in the relevance of next-generation integrated networking environments, the need to effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and addressing challenges such as security vulnerabilities and complex network management. SDN enhances operational flexibility by separating the control and data planes, introducing management complexities. This paper proposes a reinforcement learning-based network path optimization strategy within SDN environments to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the proposed method outperforms conventional schemes, it poses significant practical applications.

Efficient Task Offloading Decision Based on Task Size Prediction Model and Genetic Algorithm

  • Quan T. Ngo;Dat Van Anh Duong;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.16-26
    • /
    • 2024
  • Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.

Quantitative PCR for Etiologic Diagnosis of Methicillin-Resistant Staphylococcus aureus Pneumonia in Intensive Care Unit

  • Kwon, Sun-Jung;Jeon, Tae-Hyeon;Seo, Dong-Wook;Na, Moon-Joon;Choi, Eu-Gene;Son, Ji-Woong;Yoo, Eun-Hyung;Park, Chang-Gyo;Lee, Hoi-Young;Kim, Ju-Ock;Kim, Sun-Young;Kang, Jae-Ku
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.3
    • /
    • pp.293-301
    • /
    • 2012
  • Background: Ventilator-associated pneumonia (VAP) requires prompt and appropriate treatment. Since methicillin-resistant Staphylococcus aureus (MRSA) is a frequent pathogen in VAP, rapid identification of it, is pivotal. Our aim was to evaluate the utility of quantitative polymerase chain reaction (qPCR) as a useful method for etiologic diagnoses of MRSA pneumonia. Methods: We performed qPCR for mecA, S. aureus-specific femA-SA, and S. epidermidis-specific femA-SE genes from bronchoalveolar lavage or bronchial washing samples obtained from clinically-suspected VAP. Molecular identification of MRSA was based on the presence of the mecA and femA-SA gene, with the absence of the femA-SE gene. To compensate for the experimental and clinical conditions, we spiked an internal control in the course of DNA extraction. We estimated number of colony-forming units per mL (CFU/mL) of MRSA samples through a standard curve of a serially-diluted reference MRSA strain. We compared the threshold cycle (Ct) value with the microbiologic results of MRSA. Results: We obtained the mecA gene standard curve, which showed the detection limit of the mecA gene to be 100 fg, which corresponds to a copy number of 30. We chose cut-off Ct values of 27.94 (equivalent to $1{\times}10^4$ CFU/mL) and 21.78 (equivalent to $1{\times}10^5$ CFU/mL). The sensitivity and specificity of our assay were 88.9% and 88.9% respectively, when compared with quantitative cultures. Conclusion: Our results were valuable for diagnosing and identifying pathogens involved in VAP. We believe our modified qPCR is an appropriate tool for the rapid diagnosis of clinical pathogens regarding patients in the intensive care unit.

Antimicrobial Susceptibility of Staphylococci sp. Isolated from Bovine Milk (우유에서 분리된 포도상구균속 세균의 항생제 감수성)

  • Kim, Ji-Hoon;Ko, Mun-Joo;Kim, Ka-Hee;Lee, Seung-Hoon;Choi, Sung-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.341-345
    • /
    • 2010
  • The prevalence and antimicrobial susceptibilities of Staphylococcal isolates from bovine milk samples were assessed. From January 2009 to October 2009, a total 287 bovine milk samples were randomly collected from 15 stock raising farms located in northern area of Kyunggi province and cultured for the presence of Staphylococci spp. A total 79 staphylococcal isolates were recovered from the milk samples. The predominant isolates were S. aureus (43.03%) and S. chromogenes (24.05%). Antimicrobial resistance patterns of 79 Staphylococcal isolates against ampicillin, chloramphenicol, ciprofloxacin, erythromycin, gentamicin, oxacillin, teicoplanin, tetracyclin, and vancomycin were tested. Staphylococcal isolates revealed the highest resistance to ampicillin (56.96%) and oxacillin (39.23%). Of 31 oxacillin resistance strains, 8 strains carry mecA gene which is responsible for methicillin resistance.

Molecular Characterization of Clinically Isolated Staphylococcus aureus (인천지역에서 분리된 황색포도상구균의 분자생물학적 특성 분석)

  • Oh, Bo-Young;Kim, Jung-Hee;Gong, Young-Woo;Lee, Jae-Mann;Go, Jong-Myoung;Kim, Yong-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.305-310
    • /
    • 2008
  • Staphylococcus aureus is one of the most significant pathogens and a causative agents of nosocomial infections. The emergence of methicillin resistant S. aureus (MRSA), in particular, has become a major clinical and epidemiological problems worldwide. In this study, we analyzed the toxin genes and investigated molecular epidemiological characteristics of S. aureus isolated from stools of diarrheal patients at the hospitals in Incheon. Of the 609 strains from 2,281 specimens, 173 strains retained enterotoxin; 68 isolates (39.30%), 100 isolates (57.80%) were classified to A and C type, respectively. In the antibiotic susceptibility, all of enterotoxin positive isolates were resistant to oxacillin. Eighty eight strains (50.86%) of 173 MRSA isolate possessed tsst gene, but eta and eth genes were not detected at all. In the detection of MRSA associated genes by PCR method, mecA genes were detected in 167 strains (96.53%). From the result of PFGE analysis, we classified tsst-positive MRSA to 10 types and 24 subtypes. Type A, H and F were the major strains comprised of 57.95% (51 strains), 10.22% (9 strains) and 9.09% (8 strains) respectively.