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An Analytical and Experimental Study of Binary Image
Normalization for Scale Invariance with Zernike Moments

Whei-Yul Kim

Abstract

In order to achieve scale- and rotation-invariance in recognizing unoccluded objects in binary images using Zemnike moment features, an

image of an object has often been normalized first by its zeroth-order moment (ZOM) or area. With elongated objects such as characters,

a stroke width varies with the threshold value used; it becomes one or two pixels wider or thinner. The variations of the total area of the

character becomes significant when the character is relatively thin with respect to its overall size, and the resulting normalized moment

features are no longer reliable. This dilation/erosion effect is more severe when the object is not focused precisely. In this paper, we

analyze the ZOM method and propose as a normalization method, the maximum enclosing circle (MEC) centered at the centroid of the

character. We compare both the ZOM and MEC methods in their performance through various experiments.

I. Introduction

Moment-based features from binary images are widely used in
many applications for pattern recognition tasks including character
recognition[1]. The hardware implementation of computing moments
in real-time for images has been realized[2]. An excellent survey
on moment-based pattern recognition systems can be found else-
where[3].

The task of recognizing unoccluded 2-D objects with different
sizes randomly scattered through an image requires the system to
be invariant to translation, scale and rotation of the pattern. The
translation invariance is easily achieved by moving the origin of
the coordinate system to the centroid of each object when compu-
ting the moment features. For the rotational invariant feature,
Hu’s 7 moments, circular harmonic expansion, Zernike or pseudo-
Zemnike moments can be used[4, 5, 6]. For scale invariance,
normalization techniques have typically been used, for example,
by making the object’s height and width equal to standard values
[1]. When Zemike moments are used for feature vectors, this
normalization is crucial to the problem of object recognition at
random orientations. One of the common methods of normaliza-
tion is to use the zeroth order moment (ZOM) of the object[3, 7,
6, 8].

In most industrial applications where the input image consists
of binary patternS, the imaging environment can be controlled
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precisely so that binary patterns are optimally segmented for
inspection or recognition tasks. When the input image is
degraded, due to different lighting conditions or off-focused, the
system performs poorly. An adaptive thresholding method
compensates the contrast of the background, but the method is
computationally expensive for real-time applications since the
gradient information should be incorporated[9]. Even when objects
are segmented with the adaptive method, for example in OCR
applications, Nthe stroke width or thickness of the character
changes, i.e., the boundary of characters shrinks or expands by
few pixels resulting in change in area. This small change becomes
non-trivial when the boundary of the object is relatively longer
with respect to its area.

In this paper, our aim is to analyze the ZOM-based method for
scale invariance. The analysis will be focused on the effect of
different threshold values and the blurred effect when Zemike
moments are employed as feature vectors. Although it is not

" limited to characters, different sizes of printed alphabet characters

at random orientation are used as input patterns.

The organization of the paper is as follows. Sections 2, 3 and
4 overview the past work relevant to the translation and scale
invariance using moments. This section also contains discussions
on why normalization is crucial to the scale invariance for the
problem of object recognition using Zernike moments. We then
analyze in Section 5 the effect of dilationferosion (D/E) caused by
thresholding in-focus and blurred images. In Section 6 we describe
the scale invariance using the ZOM method, and compare it with
the Maximum Enclosing Circle (MEC) method. We then discuss
experimental results of using both methods in Section 7. Finally
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section 8 concludes our study.
. Past Work

Most regular moment-based recognition systems have used
either images of similar size or pre-normalized images with single
object; an image that contains a single object normalized to a
standard size before computing its moments. For example, a
single object in each separate image of the size 22 X16 are used
in[10], 26 character images of size 64 X64 are used in[6], library
and test images of size 128X 128 are used in[11, 12], and 132
small images in[13]. When multiple objects are present in an
image, each object has to be first segmented before extracting its
features. Cash and Hatamian used a document image of size 1792
X2304 digitized using a scanner[l]. The document image
consisted of 24 lines of the 62 alphanumerics(1488 characters).
Each character has been segmented using the contour tracing
algorithm and has been normalized to be filled in a 3232 array.

However, this method is not suitable, when the rotation involved

are elongated patterns. For example, the pattern “I” would be too
thick when normalized at an angle 90 degree. When Zernike
moment is used for feature vectors, one of the common method
of normalization is to use ZOM[6, 8]. For example, Khotanzad
and Hong have used 314 binary images of size 64 X64 with
Zernike moments as their feature vectors[6].

The advantage of ZOM method discussed in[6] is that it is
easier and simpler to compute directly from each image since
there is only single object in it, and parallel implementation can
speed up the process. The drawback of the method is that each
binary object in the image has to be pre-normalized before com-
puting its features, resulting in extra computational complexity.
Furthermore, since Zemike moments are only defined within the
unit circle, the size of the normalizing circle or the ratio of the
circle with respect to the object should be defined first. The circle
should be large enough to include the object completely so that
the resulting moments are truly invariant to rotation.

. Translation and Scale Invariance

The regular moment (or geometric moment) [14] of order p+4
for a continuous image function fx,y) is defined as

My = ffxp ¥ Ax, v).

The translation invariance is easily obtained by moving the origin
of the coordinate system to the centroid of the image Ax,y).
This moment is called central moment, and expressed for a

digitized image Ax,y) as

mM:ZXIS;_,' (x—2)" (y—2)° Ax,),

where r and y are the centroid of the image Ax,y), and are
computed from
ma -__My
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For the scale factors of an image Ax,y), there are in general
three parameters to be considered: the scale factors s, and s, are
respectively for x and y directions of the image, and the scale
factor s, is for the gray scale of the image. The moment of the

scaled image is then computed as

s 5T s

When different scaling factors s, and s, are desired, aspect
normalization can be used[11]. With intensity images, this scaling
can be considered as resampling by assuming that the gray value
Ax,y) does not change with scaling in x and y directions,
otherwise contrast invariance is to be used{15]. With range
images, Ax,y) denotes the distance from the sensor to the point
on the object, and needs to be considered[3]. With binary images,
the gray value scaling factor s, is ignored, and both s, and s,
is assumed to be s. Then mg or ZOM represents the object area
or the total number of pixels in the object.

One common approach to achieving the scale invariance is by
normalizing the area to 1 or to a constant 3{3, 6, 8, 12]. To do
so, we first compute the area of the object. Using regular
moments, the area is computed as

m =5 My,

and the scale factor s is computed as

Therefore, as the area mo changes due to any scale difference,
the scale factor s can be easily computed to incorporate changes
into the feature vectors. Alternatively m,+mp can be used(3,
14, 7} in a similar manner to ZOM method.

IV. Rotation Invariance

Zernike moments have been widely studied because of its two
distinct properties; the rotation invariance of the feature vectors
and their orthogonality[16]. The first property allows the feature
set, the magnitude of the Zernike moments extracted from the
image, to be the same at any orientation. The second property
implies no redundancy or overlap of information between the
moments[6, 8]. This property enables the contribution of each
moment to the information of the image be unique and indepen-
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dent, and becomes useful for classification of features.
The Zernike moment is defined only inside the unit circle and
the radial polynomial R,,(0) is defined as

Am}

R = 22 (_1)5 (n_‘S)! pn—Zs
nm = si( n—;m’ -1 n_zm Y .

Then Zemike moments of order (m, n) in polar coordinate are
defined as[6].
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Let the image f(p,6+a) be the rotated image of fp,8) by «
about its origin. The Zernike moments of the rotated image are

then given as
A" = A mexp(—jma).

This implies that the rotation of the image has given rise to a
phase shift in the moments, and the magnitudes remain the same
as before the rotation.

V . Dilation/Erosion (D/E) by Thresholding

In many machine vision applications, the area of the same
object or character can be changed in two ways; by scale change
andjfor by a threshold. When the binary image is used, since
ZOM is the same as the area of objects in the image, the
diameter of the normalizing circle becomes a function of the area.
As shown in Eq. 3,.the diameter of the normalizing circle is
determined by the scale factor s as.a function of the zeroth order
moment (ZOM) and mo. The circle is chosen to be large enough
to contain the pattern completely.

The scale change may be due to the physical change in the
imaging system setup such as the change of lenses with different
focal length, or different sizes of the same patterns. The other
" cause is the threshold used to make a binary pattern. That is, the
character image may shrink or expand due to the different
thresholds used. This phenomenon is severe especially when the
image is not precisely focused. As an example, Fig. 5-(a) shows
the slightly blurred image of character “E.” The size of image is
43x 31 and the gray scale along the vertical line of the character
is plotted in Fig. 5-(b). The solid line is the profile of the raw
image, and the dotted line indicates that of the off-focus image.
Notice that the stroke width varies from 1 pixel to 4 in the raw
image as the threshold changes. In the off-focus or blurred image,
the stroke width ranges from 1 0 6 pixels. The ‘actual boundaries
of binary regions of the character in the blurred image are shown
in Fig. 3 at the thresholds of 76, 136 and 196 to yield a
reasonable binary image for this particular subimage. Here the
lowest threshold was manually selected so that all strokes are

gray scale

50 E in-focus — B
E off-focus -~--—

0 5 10 15 20 25 kN 3'5 40 45
@) ()

Fig. 1. Digitized image of “E” with a CCD camera and its cross-
sectional profile along the vertical line. The size of the
character is 43X 31 pixels. '
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Fig. 2. Two symbols are modelled here to show the shrinking of
characters due to different thresholds.
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Fig. 3. Boundary points of “E” with different thresholds; 76,136
and 196.

connected to form the character, and the highest one was selected
to exclude just the background region.

When the stroke width is thin compared to the size of the
character, and the shape number (boundaryz/area) is highér[l7],
the variations in the area change are more significant. As
illustrated in Fig. 2, the quantization and different threshold cause
the D/E effect to be more significant when the shape of the
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pattern under inspection is elongated and its size is relatively
small. In other words, the thickness can increase or decrease by
one or more pixels from each side of the stroke. For example,
one pixel dilation along the boundary of the bar pattern whose
thickness is 2 pixels causes its area to expand almost two fold.
Consequently the overall size occupied in the normalized circle
reduces by 1/y2 or 0.7. Similarly, by Eq. 3, with the character
shape “S” whose thickness is 1 pixel wide, the area may be
expanded to almost three times the pattern. The analysis on this
scaling will be thoroughly analyzed in later sections.

VI. Calculation of the Normalizing Circle
Diameter

1. Analysis of ZOM Method

Owing to its straightforward nature, the condition given by Eq.
3 sounds simple and this approach to obtain the scale invariance
is attractive. The direct implementation as stated, however, is not
so because the area information of the largest object in the field
is needed. Since the Zemnike moment is defined only within a
normalizing circle and the size of the patten is not known in
advance, the circle size should be selected large enough to
include the largest object. The difficulty has to do with the fact
that in the presence of several objects with different shapes and
sizes in an image, it may not be easy to determine the size of
largest pattern, until the whole image is read and processed. Often
a priori information of the object in the field can be used.
However, when there is large size variance between the pattemns,
the circle size may be too large for some patterns, and the
extracted features may not have any discriminatory power at all
for small objects.

Here we take four patterns of three classes as an example for

» 6 9
(0]

illustration. Figure 4 shows four symbols of “—," “+, and

“+ shape. Here, the symbols “—7, “+” and “0” are modeled to
have the same area, t;, of the hatched region. The symbol “—”
and “-+” have the same width I The thickness or stroke width #,
of “+” is a little more than the half of ¢ in “—" because of the
overlapping region at the cross. The thickness of “0” is the same

“__

as that of . Circles surrounding each pattern show the mini-
mum size of circular region where Zernike moment is defined.
The patterns “+” and “+” are similar in shape, and have the
same width and height. But the stroke width #, of “+” has been
determined to keep the area twice as large as that of “—,” “+”
and “o,” which is a little longer than r. In order to normalize all
of these patterns, we first find the smallest circles for each pattern
that includes itself completely, which is similar to the one placed
on the symbol “—.” Here “mg” denotes the ZOM, dmn is the
minimum diameter to contain the object completely, and s,om is
the scale factor computed by ZOM method, and they are

computed as shown in the table 1. Here 8 has been set to i for
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Fig. 4. Three symbols are modelled here to analyze the ZOM
method.

Table 1. The properties of symbols are compared in terms of
area, minimum radius of the normalizing circle and

their ratios.

Case |Shape m g d win S som i’::
a | - | VE+E = 1 ‘/—Jf—=z 1
b | + élxz—t{z u| P+ = 1 L=
c | o H _:lr“H =~ 71r @:1 Lﬂ
d | + |2u-2=x2n| VF+& =1 —Q%V%/\/i

simplicity. .

The ratio dmin/S;om indicates how small or large is the circle
determined by the ZOM method with respect to the optimum one.
In order to have the object within the circle, this ratio should be
less than 1. When the ratio is equal to 1, it becomes the optimum
size in a sense that the object is defined at maximum in the circle.

Since the patterns and their sizes are not known in advance, the
circle has to be large enough to include the object lest the pixels
outside the region should be included. With the ZOM method, the
minimum size of the circle should be larger than the largest
diameter which is selected as:

dmax = I:nax(dmin.av dmin,b) dmin,cr dmin.d) =1

When the diameter of the enclosing circle is determined by
normalizing its ZOM to a constant so that the patterns (a) and (b)
are enclosed by the circle, it would be too small to enclose the
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pattern (d). On the other hand, this normalizing circle would be
too large for the pattern (c) whose diameter is less than all the
circumscribing circles and is only // 7. In this case the portion of
the pattern that occupies the inside of the normalizing circle is
only about one third (1 #=0.32), i.e.,, the circle defined by the
ZOM method would be x times larger than the smallest

enclosing circle. Another difficulty has to do with the D/E effect

due to the quantization of thresholding, since different thresholds
shrink or expand the binary regions. With dilation, suppose that
the pattern (a) expands its boundary by half of its width, #2, so
that it becomes 42X #2 long and t+2X 42 wide, the minimum
size of circle diameter to enclose the bar by the ZOM method is
then '

dmin,dilah'on =Y (l+t)2+ (Zt)z

N B
zom. dilation (1 F t) 2t .

On the other hand, when the bar gets thinned to the single pixel
width from its boundary with erosion, we have

1=2X42+1=!
*‘8—=\/_Zl

S zom, erosion = Ix 1

d min erosion

d min.erosion 1

S min., erosion N \/—B ’

As a numerical example, for a bar pattern which is 30 pixels high
and 5 pixels wide,'the diameter ratio of dming 10 Sioma is 2.18.
This ratio may be too large to be useful. This situation is easily
observed in real images when the character is thin and especially
when the character is small (say, 30X30), the threshold we
choose makes a significant difference when the pattern is normali-
zed. As the threshold changes, it causes the stroke width to shrink
or expand by one or more pixels from its own boundary ‘due to
quantization. Although the overall size of the character barely
changes (to 28x28), the area of the character changes signifi-
cantly when the stroke width is small.

2. Maximum Extent Circle (MEC) Method

For the reasons stated in the previous section, the normalizing
circle should be estimated for each pattern separately based on
the boundary of the pattern and should not depend on the area of
the pattern itself. As illustrated in Fig. 4, when the maximum
diameter is solely defined by the boundary points of the pattern,
all- different sizes of the pattern will have circles all circum-
scribing the pattern, yielding true scale invariant characteristics.
There are two ways of obtaining such circles:

o Find the (maximum diameter) circle that circumscribes exactly.
o Find the maximum diameter from the centroid.

~In the first method, the circle is determined by the maximum
extent of the points of the boundary. The method is the extension

of the very well known, “Convex Hull Finding” algorithm[18].
The computational complexity of this method is O(nlogn) where
» is the number of boundary points of the binary pattern. With
this method, the center of the circle determined bears no relation
to the area of the pattern, and solely depends on the formation of
boundary points of the pattern. In the second method, however,
from the list of boundary contours the paﬁem is searched to find
the maximum radius from the centroid of mass of the binary
region which is the center of the normalizing circle. We have
chosen the second method because: 1) its simplicity for imple-
mentation because the complexity of the method is only O(n); 2)
the center determined by the centroid of mass would be more
reliable and less sensitive to noise in the pattern or image.

VI Experiment

In this section, we compare the two methods discussed in the
previous sections by first simulating the D/E effect on the
boundary of the character ““E” at different thresholds. Then we
perform the experiment on the real image captured by a CCD
camera. The inverted image is used to compute the moment, i.e.,
the background O and the object region 255.

1. Simulation Results

In order to show the D/E effect more effectively, we amplified
the effect by dilatingferoding the character region by 2 pixel
steps. In Fig. 5, there are five boundaries overlapped to show the
D/E effect. The middle in solid line is the original size to start
with. The size of the character is 50 pixels wide and 90 pixels
high. Two inner contours show the eroded boundaries of the
character by two pixels each. The other two outer contours are
for the dilated or expanded boundaries by two pixels each. Fig. 6
shows the relationship between the characters and normalizing
circles determined by ZOM method. Fig. 6-(a) shows the original
size of character and the circle in which Zernike moment is
defined. In this figure, the radius of the surrounding circle is
calculated by Eq. 3. The character is scaled accordingly by
keeping the circle size fixed for the purpose of illustration. Recall
that the scale or radius of the circle increases by the square root
of the ratio of increased area to the area of the fixed region, i.e.,
the size of the character decreases by the same ratio. That is,
when the boundary points are expanded by 2 pixels, the relative
size of the character with respect to the bounding circle gets
smaller in (b) and becomes smallest in (c). Figure 6-(d) shows
that the size of character gets larger with respect to the circle,
and finally the character is too large for the circle in Fig. 6-(e).
For comparison, we have shown the result obtained by MEC
method in Fig. 7. Again, the size of the circle is fixed and the
object is scaled accordingly to show the effect of the normalized
circle plots of “E.” This figure shows that the overall size of the
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Fig. 5. Overlap of contour plots of the simulated character “E”.
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Fig. 6. Normalized plots of bounding circles for “E” computed by
ZOM method with shrinking and expansion of the boundary.
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Fig. 7. Normalized plot of bounding circle for “E” computed by
MEC method with shrinking and expansion of the boundary.

character barely changes as D/E occurs at different thresholds. It
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Fig. 8. Zemnike moments after normalization to the simulated
character “E” using ZOM method.
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Fig. 9. Zernike moments of the simulated character “E” after
normalization using MEC method.

should not matter how large or small the circle is as long as the
feature vector that we are interested in is the same. However, this
is not the case. Fig. 8 shows the plot of 25 sets of Zemike
moments on the image normalized by the ZOM method. The
abscissa of the plot shows the order of Zemike moments. Total of
25 moments are shown in the plot. Note that the zeroth order
Zernike moments |A o for each contoured region are the same as
the normalized area. The moment {A )| in all plots which should
be O by definition is not zero because the part of the object
region excluded from the circular region caused the centroid to
shift. Each curve is annotated by the upper left corner of the plot
to show the degree of D/E by numbers. For example, “Ed4”
denotes that Zernike moment set computed from the boundary
dilated by 4 pixels. In Fig. 8, some degree of correlation is
apparent between the moments sets computed from. the adjacent
contours, however, hardly can any cormrelation be observed
between the contours which are not adjacent. On the other hand,
Fig. 9 shows the result obtained using our MEC method.
Comparing with the previous plot in Fig. 8 by ZOM method, the
feature vectors of Zernike moments of all contours are very
similar, and there exists high degree of correlation among the
feature vector sets. Because of the thickness change, the overall
shape of the character changes radially from the centroid of the

character only by couple of pixels, which is only 2 or 3 9% error.
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Fig. 10. In these figures, the radius of the normalizing circle
determined by the ZOM method varies as a function of
area of “E” at different thresholds. The one determined
by the MEC method barely changes.

2. Real Image

(A) Single Object Image

Next experiment is performed on the real thresholded images.
An input image consisting of English alphabets is captured by a
Panasonic CCD camera with a resolution of 512X480. The raw
image as shown in Fig. 5 of the letter “E” is again selected for
the experiment. Figure 3 shows the area change due to the dif-
ferent thresholds selected where the image is binarized with
thresholds ranging from 76 to 196 to yield different character
thicknesses. Normalized circles are placed around the characters
in the image to show the extent of the region where Zernike
moments are defined. Only the pixels within the character after
normalization contribute to the moments. Figures 10-(a) and (f)
show the lowest and highest threshold, respectively. Figure 10-(c)
shows an optimal threshold selected at the middle of the
histogram between two clusters of black and white. The diameters
of the normalized circles are determined by both ZOM and MEC
methods. From Figs. 10-(c) to (f), the inner circles correspond to
the ZOM method and the outer one to the MEC method. As the
character stroke becomes thinner, the normalizing circle by the
ZOM method becomes smaller, while the circles by MEC method
remain almost the same. In Fig. 12, the radii determined by both
methods are plotted with respect to threshold. The radii by the
MEC method is shown (dotted line) to remain almost constant
over the whole span of threshold. Beyond the threshold 178, the
radius starts to go up because some of the regions in the back-
ground begin to merge as shown in the profile in Fig. 5-(b).
Zernike moments as features vectors extracted from these
characters are also shown in Fig. 11-(a) and (b), respectively. The
results are very similar to that of the simulation.

Table 2. Average number of pixels in the image of the characters
as the threshold changes and their standard deviation.

Threshold 130 165 200
Average area 275.34 400.45 562.82
STD . 17.74 18.78 21.84

Zewnike moments of 'E’ & diflerent threshold with ZOM method

Magninde

Magnirude

®

Fig. 11. The plot of magnitudes of Zernike moments on the
binary image thresholded at 63, 78, 123, 148, 168 and
178, and normalized by ZOM method and MEC
method. Notice that all moments are the same at the
Oth order because all magnitudes are normalized by the
zeroth order magnitude. By the deﬁhition, Ayl is zero

for all binary images.

(B) Multiple Object Image

To further evaluate the methods employed in this study, the
following experiments. were performed. A set of approximately
100 characters composed of 24 alphabets were prepared using the
Postscript!) language. The size of the characters ranges from 12
to 64 pixels with gradual changes while the rotation angle steps
by 15 degrees. The largest size of a character is limited only by
the resolution of the CCD camera. The image is captured using a

1) Trade mark of Adobe Systems Inc.




JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997 153

Redii of normalizing circle of “E’ with threshold
T T T T

ZOM -»—
MEC ~+-
2
WF e
, /
3 15
10
st
° . N . . . .
60 50 100 12 160 180 200

0 140
threshold

Fig. 12. The radii computed by ZOM method and MEC method.
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Fig. 13. The figure showes (a)-(c) show the normalizing circles
of each character using both ZOM and MEC methods at
thresholds 130, 165 and 200, respectively. Circles
surrounding each character in dotted line are for ZOM
method while in solid lines are for MEC methods.

CCD camera via a frame grabber ITEX 151 imaging system. The
binarization process plays an important role especially since the
performance of the system depends on the normalization which in
turn depends on the binarization. The smallest size of the pattern
is 12 pixels, and even a single pixel due to noise can make a
significant difference in the systems’ overall performance. In
order to reduce the noise from the digitizer as well as the artifact

Fig. 14. In this figure, all normalizing circles that circumscribe
each characters are overlapped using ZOM method at
different thresholds to show the dependency of the
threshold used.

5000027 = ~~OCO

Fig. 15. In this figure, all normalizing circles that circumscribe
each characters are overlapped using MEC method to
show the invariance of the threshold used.

of the patterns, one of the simplest method for industrial appli-
cation is to average a frame of image which can be easily done
by the imaging system hardware in real time. Eight frames of
image are averaged which takes less than a second.

Figure 13-(a) shows the partial view of our sample sheet. The
thresholds here are 130 as the lowest one, 165 being the visually
optimumn and 200 for the highest not to break the characters into
smaller segments. The characters thresholded at 130 look thinner
than the optimal one as shown in Fig. 13-(b). The average area of
each character at different thresholds are listed in Table 2. The
area changes by 31% from optimum at the lowest threshold and
40% at the highest, which accounts for a radius change from 1.2
times to 0.84 of the optimal one. From Table 2, a constant 8 has
been carefully selected for the normalizing circle to cover most of
characters in Fig. 13-(b) but not to run over to the adjacent
characters in the image. The circles are overlayed to show the
difference of the two methods. Dark circles are from the MEC
method and gray circles are from the ZOM method. Notice that
some “T” characters are not completely contained in the gray
circle in Fig. 13-(a). On the other hand, the gray circles are too
large for the characters in Fig. 13-(c). The ratio of the smallest
and the largest circles is larger as the pattern is elongated or the
shape number goes up. As per our estimation, the size difference
between circles by both methods are most significant with “S”

. characters. The character “W,” the third one from the top left
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- Fig. 16. Experiment with Helvetica character fonts, white fonts
illustrate recognition results.

comer is broken into two pieces because of the low thréshold and
treated as two separated characters. Similarly the 6th character
“V” in the second row has been broken into several pieces, treated
as noise by the system and deleted from the image. Figure 14
shows the overlap of the circles defined by ZOM at different
thresholds. The dependency of ZOM method to threshold value is
obvious. On the other hand, in Fig. 15 all circles determined by
MEC method changes very little as the threshold varies, and
shows the threshold invariance. As shown in Fig. 10, the recogni-
tion system using the MEC method with the Zemike moment for
rotational invariance has achieved close 10 100% recognition rate
on the characters in the image except the ones along the image
boundary while the ZOM method only yields 85%[19].

To illustrate the threshold invariance, we have run the experi-
ments to recognize the street names labeled along the curve. The
image of the map is taken from MAPSCO® using the same CCD
camera, and is shown in Fig. 17-(a). Figure 17-(b) shows the
results when applied a global threshold of 102 and Fig. 17-(c)
shows the results when 162 is applied as a global threshold. In
both figures white icons indicate the computer interpretation of
the original character. In Fig. 17-(b) some character along the
boundary of the image are not recognized. Similarly, no attempt
has been made to recognize the characters connected to the road
lines in Fig. 17-(c).

VH. Conclusion

In order to use the scale invariant property using the normali-
zation technique, care should be taken when the zeroth order
moment is used. Although the Zernike moment feature is location,
scale and rotation invariant, it is no longer invariant when the
pattern has been dilated or eroded and if it is treated as a scaled
image. In other words, in moment based recognition systems

which employ normalization processes as a scale invariant charac-
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Fig. 17. (a) A map image of size 512X512. (b) Recognition
result at the threshold 102. (c) Recognition result at the
threshold 162. Some of the characters are not recog-
nized because they are connected to the road lines.

teristic, the feature vectors from D/E patterns are not reliable.

When the character thickness reduces due to a high threshold, its ‘

area decreases while the width and height of the character

changes very little. Therefore, when the zeroth order moment is
used to determine the scale factor, the scale reduces by the square

root of the ratio of areas resulting in a smaller encompassing
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Fig. 18. A set of samples from a database consists of 3,000
trademarks.

circle than the size of the character. On the other hand, when the
thickness increases, the circle becomes too large for the character.
The resulting set of Zernike moments become drastically different
and is not useful as a feature set. With the MEC method, the
diameter of the normalized circle centered at the centroid of the
character whose diameter can be obtained from the contour tracing
algorithm changes very little, yielding a much more reliable
feature set for recognition upto 99.5%[19].

This method has been implemented successfully to recognize
more complex images than alphabets as illustrated in Fig. 18, where
the database consists of 3,000 various shapes of trademarks [20].
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