• Title/Summary/Keyword: meat aging

Search Result 124, Processing Time 0.019 seconds

Effects of aging and freezing/thawing sequence on quality attributes of bovine Mm. gluteus medius and biceps femoris

  • Kim, Hyun-Wook;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.254-261
    • /
    • 2017
  • Objective: The effects of aging and freezing/thawing sequence on color, physicochemical, and enzymatic characteristics of two beef muscles (Mm. gluteus medius, GM and biceps femoris, BF) were evaluated. Methods: Beef muscles at 3 d postmortem were assigned to four different combinations of aging and freezing/thawing sequence as follows; aging at $2^{\circ}C$ for 3 wk (A3, never-frozen control), freezing at $-28^{\circ}C$ for 2 wk then thawing (F2, frozen/thawed-only), aging at $2^{\circ}C$ for 3 wk, freezing at $-28^{\circ}C$ for 2 wk then thawing (A3F2), and freezing at $-28^{\circ}C$ for 2 wk, thawing then further aging at $2^{\circ}C$ for 3 wk (F2A3). Results: No significant interactions between different aging/freezing/thawing treatments and muscle type on all measurements were found. Postmortem aging, regardless of aging/freezing/thawing sequence, had no impact on color stability of frozen/thawed beef muscles (p<0.05). F2A3 resulted in higher purge loss than F2 and A3F2 treatments (p<0.05). A3F2 and F2A3 treatments resulted in lower shear force of beef muscles compared to F2 (p<0.05). Although there was no significant difference in glutathione peroxidase (GSH-Px) activity, F2A3 had the highest ${\beta}-N-acetyl$ glucominidase (BNAG) activity in purge, but the lowest BNAG activity in muscle (p<0.05). GM muscle exhibited higher total color changes and purge loss, and lower GSH-Px activity than BF muscle. Conclusion: The results from this present study indicate that different combinations of aging/freezing/thawing sequence would result in considerable impacts on meat quality attributes, particularly thaw/purge loss and tenderness. Developing a novel freezing strategy combined with postmortem aging will be beneficial for the food/meat industry to maximize its positive impacts on tenderness, while minimizing thaw/purge loss of frozen/thawed meat.

Comparison of Effects of Two Aging Methods on the Physicochemical Traits of Pork Loin

  • Jin, Sang-Keun;Yim, Dong-Gyun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.844-851
    • /
    • 2020
  • The objective of this study was to compare effects of two different aging methods on physical, chemical, and microbial traits of pork loin: Dry and wet-aged meat was hung in the cooler at 8±1℃ and 85±2.1% humidity for 14 days, while wet-aged meat was immersed in a 3.5% salt solution of brine in vacuum pouches. On day 7, pH and moisture content were higher in dry-aged loins than in wet-aged, while drip loss and total plate counts (p<0.05) were lower on day 14. As aging continued, the pH and drip loss of dry-aged loins decreased, while their total plate counts and water holding capacity (WHC) increased (p<0.05). After 7 and 14 days of aging, redness in dry-aged loins was higher than that in wet -aged muscles (p<0.05). On day 14 of aging, hardness, chewiness, and adhesiveness were lower in dry-aged pork loin as compared to those in wet-aged samples (p<0.05). Consequently, the results suggested that dry and wet aging methods differently affects meat quality traits of pork loin.

Postmortem skeletal muscle metabolism of farm animals approached with metabolomics

  • Susumu Muroya
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.374-384
    • /
    • 2023
  • Skeletal muscle metabolism regulates homeostatic balance in animals. The metabolic impact persists even after farm animal skeletal muscle is converted to edible meat through postmortem rigor mortis and aging. Muscle metabolites resulting from animal growth and postmortem storage have a significant impact on meat quality, including flavor and color. Metabolomics studies of postmortem muscle aging have identified metabolisms that contain signatures inherent to muscle properties and the altered metabolites by physiological adaptation, with glycolysis as the pivotal metabolism in postmortem aging. Metabolomics has also played a role in mining relevant postmortem metabolisms and pathways, such as the citrate cycle and mitochondrial metabolism. This leads to a deeper understanding of the mechanisms underlying the generation of key compounds that are associated with meat quality. Genetic background, feeding strategy, and muscle type primarily determine skeletal muscle properties in live animals and affect post-mortem muscle metabolism. With comprehensive metabolite detection, metabolomics is also beneficial for exploring biomarker candidates that could be useful to monitor meat production and predict the quality traits. The present review focuses on advances in farm animal muscle metabolomics, especially postmortem muscle metabolism associated with genetic factors and muscle type.

Physicochemical attributes, oxidative stability, and microbial profile of boneless sirloin and bone-in T-bone steaks from Hanwoo steer with reference to dry-aging

  • Ali, Mahabbat;Nam, Ki-Chang
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1169-1181
    • /
    • 2021
  • We investigated the comparative physicochemical attributes, oxidative stability, and microbial characteristics of 28 days dry-aged meat in between boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) muscles from Korean Native Hanwoo Steer (KNHS). Results reveal that regardless of the muscles, dry-aging increased protein content and water-holding capacity (WHC) (p < 0.05). Meat from infraspinatus-aged muscle led to darker meat with higher pH values than un-aged meat (p < 0.05). However, fat content, CIE a*, and CIE b* remained unchanged in both muscles at aging. At aged meat, thiobarbituric acid reactive substances (TBARS) values from bone-in infraspinatus muscle was 2.5-fold higher than boneless gluteus medius muscle (p < 0.05). Dry-aging led to an increase in the contents of total unsaturated fatty acids (UFAs), monounsaturated fatty acids (MUFAs), and UFA/saturated fatty acids (SFA) in both muscles (p < 0.05). Furthermore, gluteus medius aged muscle concentrated with olic acid (C18:1) compared to infraspinatus aged muscle. Irrespective of the muscles, dry-aging enhanced the total free amino acids (FAAs) as well as tasty, and bitter amino acid contents whereas decreased the tasty/bitter amino acids (p < 0.05). Aromatic amino acid, tryptophan that converted to serotonin was 2-fold higher in boneless gluteus medius muscle than bone-in infraspinatus muscle at pre and post aging processes (p < 0.05). Aged Infraspinatus muscle increased total bacteria (p < 0.05) while no salmonella spp. was detected in both muscles. Taken together, our study confirms that 28 days dry-aging profiling the quality characteristics of boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) distinctly while gluteus medius aged steak performs better owing to oxidative stability and functional compounds than infraspinatus aged steak.

Microbial Risk Assessment and HACCP Plan for the Safe Production of Dry Aged Meat (안전한 건식 숙성육 제조를 위한 미생물 위해평가 및 HACCP 적용 방안)

  • Oh, Hyemin;Lee, Hyun Jung;Jo, Cheorun;Yoon, Yohan
    • Journal of the FoodService Safety
    • /
    • v.3 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • Dry-aging is one of the traditional aging processes, especially for beef. This aging process is being popular, because it produces unique brown/roasted flavor and texture that consumers prefer. However, as it is exposed to outside without packaging food safety concerns have been raised. The objective of this study was to investigate the presence of total aerobic bacteria (TAB) and pathogenic bacteria in manufacturing environment and suggest the safety management plan for the production of dry-aged meat. Surface samples from 66 environmental and 6 beef carcass samples were collected. According to the monitoring results, the contamination levels of TAB were in the order of shelves (5.4±1.1 Log CFU/cm2), cotton gloves (2.9±0.2 Log CFU/cm2), and door knobs (2.8±0.4 Log CFU/cm2) in the dry-aging room. In the door knobs, the level of mold was higher than that of yeast. These results indicate that the mold spores may be cross-contaminated with environmental factors inside the aging room. The risk factors that may occur during the manufacturing process were presented and possibility of risk was determined. From the aspect of microbiology, aging and trimming steps were determined as the critical control points. The temperature of the aging room should be maintained below 10℃ and the humidity below 75-85%. Based on the monitoring and the risk assessment of the dry-aging process, we prepared the safety management plan for the production of dry-aged meat, and it should be useful in improving the food safety of dry-aged meat.

A Technique to Quantify the Extent of Postmortem Degradation of Meat Ultrastructure

  • Hwang, I.H.;Thompson, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2002
  • This study investigated quantitative changes in the spaces between and within myofibrils and the impact of high and low voltage electrical stimulation on muscle ultrastructure as seen in electron micrographs. In addition, the relationships of these spaces and the impact to meat tenderness were investigated. The degradation of myofibrils during aging appeared to be localized across the muscle fibre. Structural deterioration of muscle fibres was evident 1 day post-mortem, involving the weakening in the lateral integrity of the myofibrils and Z-disc regions. Meat tenderisation, as shown by objective measurements, coincided with these increases in degradation, as assessed by the sum of the gaps between and within myofibrils. The results showed that the total size of gaps between and within myofibrils can be used as an indicator of meat tenderization during aging, but that ultrastructural alteration in electrically stimulated muscle had little relationship with meat tenderness.

Combined Effect of Aging and Irradiation on Physicochemical Quality of Pork Shoulder

  • Yim, Dong-Gyun;Jo, Cheorun;Mahabbat, Ali;Park, Ji-Young;Lee, Seong-Yun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.510-519
    • /
    • 2019
  • The effect of combined electron-beam irradiation and aging temperature of pork on microbiological and physicochemical properties was investigated. The samples from pork shoulder were irradiated with 0 or 2 kGy, vacuum-packaged, and assigned randomly to an aging temperature ($2^{\circ}C$, $10^{\circ}C$, or $25^{\circ}C$) during 8 d. On 4 d of aging at $25^{\circ}C$, total aerobic bacteria of non-irradiated ones reached 7 Log CFU/g which is no salable levels. Shear force values of irradiated meat after aging for 2 and 4 d at $25^{\circ}C$ was lower than those aged at $2^{\circ}C$. Irradiated samples at $2^{\circ}C$ had lower cooking loss after 2 and 8 d of aging, compared with other aging temperatures. Irradiation did not accelerate 2-thiobarbituric acid reactive substance (TBARS) value when aged up to 4 d. Irradiated samples aged at $10^{\circ}C$ and $25^{\circ}C$ for 8 d scored significantly higher TBARS values. With an increased aging period, $a^*$ and $b^*$ in irradiated samples at $2^{\circ}C$ slightly increased, but irradiation caused negligible changes in meat color. The highest contents of a desirable nucleotide flavor compounds (inosine-5-phosphate) were observed in pork at $2^{\circ}C$ when aged for 4 and 8 d, while the lowest contents were observed at $25^{\circ}C$. Aging in irradiated pork for 8 d at $2^{\circ}C$ resulted in optimal condition with improved meat quality and minimal microbiologically negative defect.

Effects of Strain on Performance, and Age at Slaughter and Duration of Post-chilling Aging on Meat Quality Traits of Broiler

  • Abdullah, Abdullah Y.;Muwalla, Marwan M.;Maharmeh, Haitham O.;Matarneh, Sulaiman K.;Ishmais, Majdi A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1645-1656
    • /
    • 2010
  • This study was conducted to investigate the effects of strain on broiler performance, and age at slaughter and postchilling (PC) aging time on meat quality traits. A total of 500 one-day-old chicks (250 Hubbard classic and 250 Lohman) were reared under commercial conditions. Half of the broiler birds from each strain were slaughtered at 32 days and the other half at 42 days old. At each processing day, 168 carcasses were randomly selected (84 Hubbard and 84 Lohman) and divided into groups of 28 carcasses within each strain, and aged for 0, 4 and 24 h after chilling. Average weekly body weight was comparable between strains. Feed conversion ratio was higher (p<0.05) for the Hubbard strain during the second and third week of age. Initial carcass pH was significantly (p<0.05) affected by age where younger birds (32-d-old) had lower pH values than older (41-d-old) birds. Breast temperature was higher (p<0.001) for Lohman than Hubbard at 0, 2 and 4 h of PC. Younger birds had a lower breast temperature (p<0.001) at all measured times of PC. Thaw loss, cook loss and water holding capacity were not significantly affected by strain, age or aging time. Lohman strain had more tender meat (p<0.05) than Hubbard strain, and tenderness was improved with the increase of broiler age and aging time. Meats from Hubbard were lighter and less red than those from Lohman strain where younger birds had darker color. In conclusion, strain, age at slaughter and PC aging duration are critical to breast meat quality characteristics, and 4 h of aging are required before deboning in order to obtain more tender fillets.

Tenderness Improvement and Utilization of Low Quality Meat by High Temperature Aging (고온숙성에 의한 저급육의 연도개선과 그 이용)

  • Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.549-555
    • /
    • 1989
  • The effect of high temperature aging on the meat tenderness improvement was studied, and also the effect of salt, pyrophosphate and succinic anhydride on binding characteristics of restructed beef were compared. At high temperature aging, shear force value decreased and myofibrillar fragmentation index increased as the aging progressed. From the electronic microscopic observation, the morphological change of myofibril appeared much faster when the meat was aged at high temperature. Added salt increased TBA values and rupture strength while reducing cooking loss. Increase in pyrophosphate decreased rooking loss and Increased rupture strength and TBA value. When salt and pyrophosphate were combined, the effects were somewhat additive. Added succinic anhydride increased cooking loss and hardness and decreased color rating, acceptability rating and adhesiveness, but cohessiveness was not significantly different from control group containing salt and pyrophosphate. The results suggest that high temperature aging have greater improving effect of meat tenderness of Korean native male cattle compared to low temperature aging and addition of succinic ahydride in combination with salt and pyrophosphate reduce binding ability of restructured beef.

  • PDF

A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review

  • Lian, Ting;Wang, Linjie;Liu, Yiping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • Tenderness is the most important meat quality trait, which is determined by intracellular environment and extracellular matrix. Particularly, specific protein degradation and protein modification can disrupt the architecture and integrity of muscle cells so that improves the meat tenderness. Endogenous proteolytic systems are responsible for modifying proteinases as well as the meat tenderization. Abundant evidence has testified that calpains (CAPNs) including calpain I (CAPN1) and calpastatin (CAST) have the closest relationship with tenderness in livestock. They are involved in a wide range of physiological processes including muscle growth and differentiation, pathological conditions and post-mortem meat aging. Whereas, Calpain3 (CAPN3) has been established as an important activating enzyme specifically expressed in livestock's skeletal muscle, but its role in domestic animals meat tenderization remains controversial. In this review, we summarize the role of CAPN1, calpain II (CAPN2) and CAST in post-mortem meat tenderization, and analyse the relationship between CAPN3 and tenderness in domestic animals. Besides, the possible mechanism affecting post-mortem meat aging and improving meat tenderization, and current possible causes responsible for divergence (whether CAPN3 contributes to animal meat tenderization or not) are inferred. Only the possible mechanism of CAPN3 in meat tenderization has been confirmed, while its exact role still needs to be studied further.