• Title/Summary/Keyword: measurement interval

Search Result 689, Processing Time 0.031 seconds

An Adaptive Connection Admission Control Method Based on the Measurement in ATM Networks (ATM망에서 측정 기반 적응적 연결 수락 제어)

  • 윤지영;김순자
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1907-1914
    • /
    • 1998
  • This paper proposes the adaptive connection admission cotrol using the variale MRR(measurement reflection ratio) and the distribution of the number of cells arriving during the fixed interval. This distribution is estimated from the measured number of cells arriving at the output buffer during the fixed interval and traffic parameters specified by user. MRR is varied by the difference of estimated distribution and measurement distribution. As MRR is adaptively varied by estimated distribution error of accepted connections, it quickly reduces estimation error. Also, the scheduling scheme is proposed for multiplexed traffic with various traffic characteristics. For each traffic class, this scheme estimates adaptively equivalent bandwidth and schedules according to equivalent bandwidth ratio of each traffic class, so it improves cell loss rate and link utilization.

  • PDF

Design of Counter Circuit for Improving Precision in Distance Measuring System (거리 측정 시스템의 정밀도 향상을 위한 카운터 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.885-890
    • /
    • 2020
  • In the distance measurement system the time-to-digital conversion circuit used measures the distance using the time interval between the start signal and the stop signal. The time interval is generally converted to digital information using a counter circuit considering the response speed. Therefore, a clock signal with a high frequency is required to improve precision, and a clock signal with a high frequency is also required to measure fine distances. In this paper, a counter circuit was designed to increase the accuracy of distance measurement while using the same frequency. The circuit design was performed using a 0.18㎛ CMOS process technology, and the operation of the designed circuit was confirmed through HSPICE simulation. As a result of the simulation, it is possible to obtain an improvement of four times the precision compared to the case of using a general counter circuit.

Optimal Calibration Interval Analysis Method through the Goodness of Fit Test of Measurement Reliability Models based on Maintenance Data (정비 데이터 기반 측정신뢰성 모델 적합성 검정에 의한 최적 교정주기 분석 기법)

  • Cha, Yun-bae;Kim, Boo-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.178-180
    • /
    • 2016
  • TMDE(Test Measurement and Diagnostic Equipment) which is using in the military weapon system should perform the periodic calibration to maintain a measurement reliability during the life cycle, organizations are faced with increasing pressures to minimize costs while improving the reliability of test equipment. Previous studies suggest that reliability models are determined by considering simple size and characteristics of equipment, however an applying single Model may not be fit well maintenance data of many kinds of TMDEs. This paper presents that recommending an optimal calibration interval through the goodness of fit test with verifying statistical significance level among the several intervals which are computed with using major reliability models. According to the result of applying the actual proposed of calibration interval analysis method for various types of equipment, reliabilities are maintained for the end of calibration intervals.

  • PDF

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.95-108
    • /
    • 1998
  • Downhole testing and seismic CPT (SCPT) have been widely used to evaluate stiffness profiles of the subgrade. Advantages of downhole testing and SCPT such as low cost, easy operation and a simple seismic source have got these testings more frequently adopted in site investigation. For the automated analysis of downhole testing and SCPT, the concept of interval measurements has been practiced. In this paper. a new inversion procedure to deal tilth the interval measurements for the automated downhole testing and SCPT (including a newlydeveloped continuous SCPT) is proposed. The forward modeling in the new inversion procedure incorporates ray path theory based on Snell's law. The formulation for the inversion analysis is derived from the maximum likelihood approach, which estimates the maximum likelihood of obtaining a particular travel time from a source to a receiver. Verification of the new inversion procedure was performed with numerical simulations of SCPT using synthesized profiles. The results of the inversion analyses performed for the synthetic data show that the new inversion analysis is a valid procedure which enhances Va profiles determined by downhole testing and SCPT.

  • PDF

Effect of Measurement Error on the Economic Design of Control Charts for Controlling Process Means (측정오차가 공정평균 관리도의 경제적 설계에 미치는 영향)

  • 염창선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.55-63
    • /
    • 1999
  • Past studies on economic control charts for controlling process means assumed that the measures of a quality characteristic do not have measurement error. In practice, however, this assumption is frequently violated. In this paper, the economic design models of three control charts(Xbar control chart, Xbar control chart with warning limits, and CUSUM control chart) for controlling process means are developed on the assumption that the measures can have measurement error. The effects of measurement error on the process control cost and design parameters of three economic control charts are examined. According to the experiments done in this study, when measurement error exists, the economic CUSUM control chart has lower process control cost in comparison with two other control charts. When measurement error becomes larger, both the sample size and the sampling interval increase while the control limits decrease.

  • PDF

Measurement and Assessment on the Shaft Power Measurement of Diesel Engine using Strain Gauge in Marine Vessel (선박에서 스트레인 게이지를 이용한 디젤엔진의 축 동력 측정과 평가)

  • Lee, Don-Chool;Song, Myong-Ho;Kim, Sang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1152-1161
    • /
    • 2009
  • The power measurement of main propulsion system on the new vessels can be classified with the direct method acquired from the shaft's strain using strain gauge and the indirect method converted and summed from all of cylinders combustion pressure using mechanical or electrical pickup device during the sea trial. This power is fluctuated by external factors which was influenced by various sea motions with long time interval and by internal factors which was influenced by varying torques of torsional vibration and bending moment, due to mis-aligned shaft and whirling vibration with short time interval. In this paper, the statistical analysis method for the shaft power measurement and assessment using strain gauge in marine vessels are introduced. And these are identified by the low speed two stroke diesel engine model and four stroke medium speed diesel engine model including reduction gear.

Development of Density Measurement Technique Based on Two Point Detectors and Measurement Reliability According to Different Sensing Gaps (두 지점의 지점검지기를 이용한 밀도측정방안 개발 및 측정간격에 따른 신뢰성 분석)

  • Lee, Cheong-Won;Kim, Min-Seong;Park, Jae-Yeong;Lee, Eun-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • Density is the most important congestion indicator among the three fundamental flow variables, flow, speed and density. Measuring density in the field has two different ways, direct and indirect. Taking photos with wide views is one of direct ways, which is not widely used because of its cost and lacking of proper positions. Another direct density measuring method using two point detectors has been introduced with the concept of instantaneous density, average density and measurement interval. The relationship between accuracy and measurement interval has been investigated using the SIMULATION data produced by Paramics Application Programming Interface function. We analyze the affect of segment density accuracy by sensing gap each road condition such as sensing segment length, lane and LOS after gathering data by Paramics Application Programming Interface.

Assessing the accuracy of electric energy monitoring system (전기 에너지 모니터링 시스템의 신뢰성 평가 방안)

  • You, Young Hag;Leem, Choon Seong;Choi, Dae Soon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.53-60
    • /
    • 2018
  • In order to manage energy efficiency by analyzing the amount of energy, it would determine the nature of the factors involved in the energy utilization. Therefore, accurate measurement of the energy consumption data is an important factor in the energy management. In this study, we are aware of the importance of the data measurement, and proposes the accuracy assessment of electric energy monitoring system. According to conventional statistical methods it is proceeded as follows; i)the measurement error value would be determined by a random variable, ii) setting the confidence interval to consider the distribution of the statistic and determines the confidence level of the measurement accuracy. And using the t-distribution CDF is used to facilitate even small sample data.

A Feasibility Study of Constitution Discrimination Using a Measurement Device for Dynamic Friction Coefficients of the Back of a Hand (손등피부 운동 마찰계수 측정기를 이용한 체질 판별 가능성 연구)

  • Kim, Keun-Ho;Woo, Yung-Jae;Lee, Hae-Jung;Lee, Yu-Jung;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2010
  • 1. Objectives Our goal is to observe the feasibility of constitution discrimination from computing quantitative roughness index from dynamic friction coefficients and their gradients with the measurement device of skin friction with 3-Axis load cell sensor. 2. Methods In the traditional Korean medicine, skin diagnosis is one of the examination methods to discriminate Sasang constitution since it was known that Tae-eumin has rough skin, and Soyangin has smooth one. It is based on the skin roughness on the back of one's hand for the discrimination. The measurement device of skin friction with 3-axis load cell sensor has been developed in order to provide quantitative skin roughness through dynamic friction coefficients. The effective interval of the coefficients is obtained from the automatic sampling algorithm to use their curvature and slope. Then, Fisher's discriminant function of them makes the discrimination. 3. Results The success rate of extracting the effective interval was about 90% and the discriminant accuracy between Tae-eumin and Soyangin was 70% and 68% for men and women, respectively. The entire methods showed the possibility to distinguish between Tae-eumin and Soyangin by using stochastic properties of roughness index, which can make the entire system to include the measurement, the computation of the roughness index and the discrimination of constitution automatical. 4. Conclusions The measurement device, the automatic sampling algorithm of dynamic friction coefficients and the constitution discrimination algorithm were developed, respectively, and their combination can become the serial and automatic procedure for quantitative and objective skin diagnosis, which mimics the movement of the Oriental medical doctors' skin diagnosis. It can be applied to healthcare as well as the diagnosis of constitution in a u-Health system soon.

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (구조함정 Wet Bell Diving System 운용성능 개선에 관한 연구)

  • Choi, Woo-Suk;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.176-183
    • /
    • 2020
  • A ship has three types of diving systems (Diver Stage Diving, Wet Bell Diving and Scuba Diving) to carry out a search-and-rescue operation. To reduce the possibility of decompression sickness, any diving systems shall comply with the decompression procedure according to the decompression table corresponding to the diving depth and diving time. The decompression procedure is largely divided into two methods: underwater decompression and underwater-onboard decompression. In particular, the surface interval shall not exceed 5 minutes, which is the phase from underwater decompression to underwater-onboard decompression, in accordance with the U.S Navy Diving Manual. However, the surface interval is greater than 5 minutes as a result of using Wet Bell Diving. This paper describes the result of cause analysis and measurement with improved Wet Bell Diving. Using improved Wet Bell Diving reduced the surface interval to less than 5 minutes. The result of the research can be used for operation and improving the performance of diving systems.