• Title/Summary/Keyword: measurement and modeling

Search Result 1,299, Processing Time 0.03 seconds

Measurement and Explanation of DC/RF Power Loci of an Active Patch Antenna

  • Mcewan, Neil J.;Ali, Nazar T.;Mezher, Kahtan A.;El-Khazmi, Elmahdi A.;Abd-Alhameed, Raed A.
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • A case study of an active transmitting patch antenna revealed a characteristic loop locus of DC power versus RF output power as drive frequency was varied, with an operational bandwidth substantially smaller than the impedance bandwidth of the radiator. An approximate simulation technique, based on separation of the output capacitance of the power transistor, yielded easily visualized plots of power dependence on internal load impedance, and a simple interpretation of the experimental results in terms of a near-resonance condition between the output capacitance and output packaging inductance.

Improved prediction of Pump Turbine Dynamic Behavior using a Thoma number dependent Hill Chart and Site Measurements

  • Manderla, Maximilian;Kiniger, Karl N.;Koutnik, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.63-72
    • /
    • 2015
  • Water hammer phenomena are important issues for the design and the operation of hydro power plants. Especially, if several reversible pump-turbines are coupled hydraulically there may be strong unit interactions. The precise prediction of all relevant transients is challenging. Regarding a recent pump-storage project, dynamic measurements motivate an improved turbine modeling approach making use of a Thoma number dependency. The proposed method is validated for several transient scenarios and turns out to improve correlation between measurement and simulation results significantly. Starting from simple scenarios, this allows better prediction of more complex transients. By applying a fully automated simulation procedure broad operating ranges of the highly nonlinear system can be covered providing a consistent insight into the plant dynamics. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

Development of a CAM System for Mold Machining using 3D Measurement Data (3차원 측정 데이터를 이용한 금형 가공용 CAM시스템 개발)

  • 구영회
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.79-88
    • /
    • 1998
  • This study deals with the development of CAM system which can machine and measure any shape of mold and die by machining center and coordinate measureing machine . The overall goal of the CAM system is to achieve the mold and die machining , from digitizing through to final cutting. The hardware of the system comprises PC and machining center. CMM. There are three steps in the mold and die machining. (1) measuring of physical model by the CMM, (2) geometric modeling by the CAD system, (3) generation of NC code by the tool path compensated for tool radius. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications (칩 마운터용 리니어 모터 스테이지의 열저항 모델링)

  • Jang, Chang-Su;Kim, Jong-Yeong;Kim, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.716-723
    • /
    • 2002
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model (TRM) was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than 7$^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air and -water flow rate.

Volumetric Error Identification for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 체적오차 규명)

  • Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.

Dispersion Modeling of Fine Carbon Fibers in Atmospheric Boundary Layer (대기경계층에서 미세 섬유 확산 모델링)

  • Kim, Seog-Cheol;Hwang, Jun-Sik;Lee, Sang-Kil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.169-175
    • /
    • 2008
  • A fine carbon fibers dispersion model is implemented to calculate the scattering range and ground level concentration of carbon fibers emitted at certain altitudes of atmospheric boundary layer. This carbon fibers dispersion model was composed by coupling a commonly used atmospheric dispersion model and an atmospheric boundary layer model. The atmospheric boundary layer model, applying the Monin-Obukov Similarity Rule obtained from measurement input data at ground level, was used to create the atmospheric boundary layer structure. In the atmospheric dispersion model, the Lagrangian Particle Model and the Markov Process were applied to calculate the trajectory of scattered carbon fibers relative to gravity and aerodynamic force, as well as carbon fibers specification.

The Effect of Insertion Loss on the Element of Exhaust Muffler (배기 소음기 구조가 삽입손실에 미치는 영향)

  • 강동림;김영호;전현부기;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.42-51
    • /
    • 2000
  • The performances of the simple expansion, perforated tube, and conical-connector type as an exhaust muffler are shown in this study. Applying a model in which the method of four-pole parameter is used makes theoretical estimation of the insertion loss. Experiment is performed for the measurement of the insertion loss under four cases according to the variation of the tail pipe length. By comparing the theoretical prediction with the experimental results, the validity of the modeling using the method of four-pole parameter is verified. The personal computer simulation programs for the above mentioned theory on the muffler design have been developed and exhaust sound level measurements have been carried out for simple expansion muffler, conical-connector muffler, perforated tube mufflers and the combined type of conical-connector and simple expansion muffler. The measured results for attenuation characteristics of noise for each muffler are compared with the computed theoretical results to verity the confidence and applicable limits of the theoretical equation derived.

  • PDF

Analysis of Pulse Propagation Characteristics in GIS Using Spatial Network Method (공간회로망법을 이용한 GIS내부의 펄스 전파특성 해석)

  • Go, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • In this paper, propagation and damping characteristics of PD pulse in GIS are analyzed using SNM. These characteristics are very important to make a diagnosis and protection of accident in GIS. SNM is numerical method in time domain and very useful method to analyze 3-Dimensional structure such as GIS. GIS modeling is made simply as the form of coaxial cable and then spacers are inserted in it. The scattering and reflection in the GIS are appeared and damping characteristics of PD pulse are shown. When simulation using SNM compare to measurement, two results are similar.

  • PDF

Development of Inter Turn Short Fault Model of IPM Motor (IPM모터의 턴쇼트 고장모델에 관한 연구)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.

Measurement of flow around KRISO 138K LNG Carrier Model (KRISO 138K LNG 운반선 모형 주위의 국부 유동장 계측)

  • 반석호;윤현세;이영연;박일룡;이춘주;김우전
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • It is important to understand the flow characteristics such as wave and wake development around a ship for the design of the hull forms with better resistance and propulsive performance. The experimental results explicating the local flow characteristics are also invaluable for validation of the physical and numerical modeling of CFD codes, which are recently gaining acknowledgements as efficient tools for hull form evaluation This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138K LNG Carrier (KLNG) model with propeller and rudder. The results contained in this paper can provide the valuable information on the effect of propeller and rudder on stern flow characteristics of the modern commercial hull form, furthermore, the present experimental data will provide important database for CFO validation.