• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.028 seconds

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

DIRECTIVE HARMONIC WAVE DETECTING SYSTEM USING LINEAR MICROPHONE ARRAY (직선배열 Microphone에 의한 음원의 방향과 주파수의 분석 System)

  • CHANG J.;ABE M.;KIM C.;KIDO K.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 1980
  • Various methods have been so far proposed to find out the directions and spectra of sound waves from the sources for provisions of noise controls. The conventional methods are generally classified into three systems such as, single microphone system, moving microphone system and multi-microphone system, which composes a resultant super directivity by giving a appropriate delay and a weighting coefficient in the output of each microphone. In case of using a single microphone there is a difficulty in providing it with desirable super directivity in the low frequency range, while in case of using multi-microphone system there has been a disadvantage that the measurement of directivity could not separately be done with the spectrum analysing. And in case of the use of a moving microphone system it needs a condition that the sound source to be detected should be stationary state and in rest. However here we introduce a method that the spectral analysing and the directivity of synthesis can be separately carried out by using a linear array of many microphones, in which each output of the microphone is multiplied by appropriate weighting coefficient and all of those products are summed after passing through adequate filters. The resultant signal is then sampled with an adequate sampling frequency and taken average for processing.

  • PDF

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

Material structure generation of concrete and its further usage in numerical simulations

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.335-344
    • /
    • 2018
  • The execution of an experiment is a complex affair. It includes the preparation of test specimens, the measurement process itself and also the evaluation of the experiment as such. Financial requirements can differ significantly. In contrast, the cost of numerical simulations can be negligible, but what is the credibility of a simulated experiment? Discussions frequently arise concerning the methodology used in simulations, and particularly over the geometric model used. Simplification, rounding or the complete omission of details are frequent reasons for differences that occur between simulation results and the results of executed experiments. However, the creation of a very complex geometry, perhaps all the way down to the resolution of the very structure of the material, can be complicated. The subject of the article is therefore a means of creating the material structure of concrete contained in a test specimen. Because a complex approach is taken right from the very start of the numerical simulation, maximum agreement with experimental results can be achieved. With regard to the automation of the process described, countless material structures can be generated and randomly produced samples simulated in this way. Subsequently, a certain degree of randomness can be observed in the results obtained, e.g., the shape of the failure - just as is the case with experiments. The first part of the article presents a description of a complex approach to the creation of a geometry representing real concrete test specimens. The second part presents a practical application in which the numerical simulation of the compressive testing of concrete is executed using the generated geometry.

Implementation of the wearable PTT measurement system for health monitoring during daily life (일상생활 건강 모니터링을 위한 착용형 PTT 측정 시스템의 구현)

  • Ye, Soo-Young;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.220-226
    • /
    • 2011
  • Device of the ECG and pulse signal was made to measure PTT signal using non-invasive method and possible to wearable. PTT alterations were observed according to position change using implemented system.It was needed to ECG and pulse to detect the PTT, used the photoplethymorgraphy appeared to change the blood volume. And also wireless sensor node which was able to Zigbee compatibility was used to transfer the detected ECG and pulse signal to PC. Noise was removed from transit data and algorithm was applied to calculate the PTT. After the evaluation of both the conventional measuring systems and the proposed photoplethymography measuring system, a highly effective and efficient formation and distribution sequences were found within the proposed photoplethymography measuring system.

Signal Processing for Stabilizing Output of Fine Dust Sensor (미세먼지 센서 출력의 안정화를 위한 신호처리)

  • Jung, Sang-Wook;Park, Jun-Hyeon;Kim, Ju-An;Kim, Jae-Wook;Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.344-346
    • /
    • 2018
  • Air pollution has become a social issue. Particularly, interest in fine dust is increasing. Various kinds of sensors are being used to measure fine dust. The most commonly used infrared detection dust sensors operate by sensing the diffraction of light through an infrared receiver and sensing the light reflected by the dust in the air. However, this method has a drawback in which accurate data analysis is difficult due to deviation caused by the noise during measurement. In order to overcome such drawbacks, in this thesis, a low pass filter algorithm of FIR(Finite Impulse Response) filter was designed and implemented.

  • PDF

Design, fabrication, and evaluation of RF module in compliance with the IEEE 802.11a standard for 5GHz-band Wireless-LAN applications (IEEE 802.11a 규격을 만족하는 5GHz 대역 무선 랜용 RF 모듈의 설계, 제작과 성능 평가)

  • 권도훈;김영일;이성수;박현철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3C
    • /
    • pp.248-255
    • /
    • 2002
  • An RF module in compliance with the IEEE 802.11a standard has been designed and its performance has been measured. Conventional heterodyne architecture with 580MHz intermediate frequency has been realized. Measurement results show that the receiver has a low Noise Figure of 5dB, the maximum gain of 70dB, and dynamic range as wide as 61dB. Also, the SAW filter used for channel selection in the IF section allowed minimum inter-channel interference. in addition to satisfying the RF output power requirement, the transmitter features its output P1dB as high as 34dBm so that the high peak-to-average ratio of the Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme can be handled with minimum nonlinear distortion. The output P1dB of 34dBm of the transmitter corresponds to back-off powers of 18dB and 11dB with respect to the output power for the low and the middle frequency bands, respectively.

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Multi-Modal User Distance Estimation System based on Mobile Device (모바일 디바이스 기반의 멀티 모달 사용자 거리 추정 시스템)

  • Oh, Byung-Hun;Hong, Kwang-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • This paper present the multi-modal user distance estimation system using mono camera and mono microphone basically equipped with a mobile device. In case of a distance estimation method using an image, we is estimated a distance of the user through the skin color region extraction step, a noise removal step, the face and eyes region detection step. On the other hand, in case of a distance estimation method using speech, we calculates the absolute difference between the value of the sample of speech input. The largest peak value of the calculated difference value is selected and samples before and after the peak are specified as the ROI(Region of Interest). The samples specified perform FFT(Fast Fourier Transform) and calculate the magnitude of the frequency domain. Magnitude obtained is compared with the distance model to calculate the likelihood. We is estimated user distance by adding with weights in the sorted value. The result of an experiment using the multi-modal method shows more improved measurement value than that of single modality.