• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.03 seconds

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

A Study of DAB Tuner Module for ITS service (ITS서비스를 위한 DAB 튜너 모듈의 연구)

  • Kim Min-cheol;Sim Wan-ki;Kim Sang-woo;Kim Bok-ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.1-12
    • /
    • 2003
  • DAB(Digital audio broadcasting) is a next generation radio broadcasting system which provides CD quality audio, various data services and superior reception ability when moving. Also, it can show traffic informations and news literally or graphically. In this paper, we design and fabricate the DAB tuner for ITS service that follows Eureka-147 and ETSI 300 401 specifications. This small-sized tuner can be adopted to mny electronic equipments such as a Hi-Fi audio, DVD player, car audio system etc.. The overall performance of the tuner depends on a phase noise of VCO and the sensitivity of the receiving system is influenced by LNA, image rejection filter and channel selection filter. All our measurement results satisfy the specification for a DAB system with the return loss of 9dB, the noise figure of 6dB for both Band 111 and L-band and the sensitivity of -97dBm.

  • PDF

A Study on the System Identification of Tunnel Lining Using Static Deformation Data (정적 내공변위를 이용한 터널라이닝 손상 검출기법에 관한 연구)

  • 이준석;최일윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.153-160
    • /
    • 2002
  • A new system identification method based on tunnel deformation data is proposed to find the damage in the lining structure. For this, an inverse problem in which the deformation data and dead load of concrete lining are known a priori is introduced to estimate the degree and location of the damages. Models based on uniform reduction of stiffness and homogenized crack concept are individually employed to compare the applicability and relative advantages of the models. Numerical analyses are peformed for the idealized tunnel structure and the effect of white noise, common in most measurement data, is also included to better understand the suitability of the proposed models. As a result, model 1 based on uniform stiffness reduction method is shown to be relatively insensitive to the noise, while model 2 with the homogenized crack concept is proven to be easily applied to the field situation since the effect of stiffness reduction is rather small.

Estimation of Cavity Vibration Frequency Using Adaptive Filters for Gas Flow Measurement (적응 필터를 이용한 공동진동주파수 추정에 의한 기체 유량측정)

  • 남현도
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.134-140
    • /
    • 2003
  • In this paper, a hardware implementation of gas flow meter for accuracy improvement and saving repair costs at a field is investigated. An adaptive filter using LMS algorithms for estimating cavity vibration frequencies in noisy environments is also studied. The proposed cavity gas flow meter measures cavity sound signals in gas flow tube using microphone and signal processing systems estimate the cavity vibration frequency from the measured signal. The flow velocity and flow quantity can be calculated using the estimated cavity vibration frequency. Since cavity vibration frequency is corrupted by the environmental noise, an adaptive filter using NLMS algorithms is used for cancelling the environmental noise. Experiments using 1MS32OC32 digital signal processor are performed to show the effectiveness of the proposed system.

Comparative Analysis between T-4 Drilling and Dual Drilling Methods through Field Measurements (현장계측을 통한 T-4 천공과 암반 이중천공의 비교·분석)

  • Son, Moorak;Lee, Jongwoo;Seo, Jeongho;Kim, Jongmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.13-20
    • /
    • 2016
  • This study carried out field measurements of rock drilling where two PRD (Percussion Rotary Drilling) methods, T-4 drilling method and dual drilling method, were considered and the study examined the characteristics of vibration level, noise level, drilling speed, and drillig verticality of the two method. The results of field measurements were compared and analyzed in details to provide the drilling information so that the problems due to rock drilling is minimized and the drilling efficiency is improved in the future. The limited measurements in the field indicated that the dual drilling method showed lower vibration and noise levels and better drilling speed and verticality.

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Experimental Study on the Damping Estimation of the 5×5 Partial Fuel Assembly (5×5 부분핵연료 집합체의 감쇠추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.163-168
    • /
    • 2006
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle $(5\times5)$ which is called partial fuel assembly is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid to obtain the Flow-Induced Vibration (FIV) characteristics of the scaled fuel assembly over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the assembly prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the scaled test assembly. For the damping factor of the partial fuel assembly and the grid cage at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the partial fuel assembly is about $0.7\%$ with reasonable error of $2\%$ for the previous results. Nonlinear behavior of the partial fuel assembly might be stem mainly from the rod-grid support configuration.

Experimental and Analytical Study of a Cooling Mechanism Using Acoustic Streaming by Ultrasonic Vibrations (초음파진동에 의한 음향유동을 활용한 냉각 메카니즘의 실험 및 이론적 연구)

  • Loh, Byoung-Gook;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.694-702
    • /
    • 2003
  • A cooling mechanism using acoustic streaming by ultrasonic vibrations and associated convective heat transfer enhancement is investigated experimentally and analytically. Acoustic streaming pattern and associated heat transfer characteristics are presented. Analytical transient temperature profile of the heated plate following Nyborgs theory is accomplished along with experimental measurement. A temperature drop of 30 C is obtained in 4 minutes with vibration amplitude of 10${\mu}{\textrm}{m}$. As the vibration amplitude is further increased to 25${\mu}{\textrm}{m}$ a temperature drop of 40 C is achieved that is the maximum temperature drop obtained with the current experimental apparatus. Analytical heat transfer solutions verified a temperature drop of 4$0^{\circ}C$ with a vibration amplitude of 25${\mu}{\textrm}{m}$ at 28.4 kHz which is experimentally obtained.