The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.
This paper investigates what informal knowledge and strategies fifth-grade students brought to a classroom and how much they had potential to solve fraction division story problems. The findings show that most of the participants were engaged to understand the meaning of fraction division prior to their formal instruction at school. In order to solve the story problems, the informal knowledge related to fractions as well as division was actively utilized in student's strategies and justification. Students also used various informal strategies from mental calculation, direct modeling, to relational thinking. Formal instructions about fraction division at schools can be facilitated for sense-making of this complex fraction division conception by unpacking informal knowledge and thinking they might bring to the classrooms.
Representation has been main topic in teaching and learning mathematics for a long time. Moreover, teachers' deficiency of representation about fraction results in teaching algorithms without conceptual understanding. So, this paper was conducted to investigate and analysize the elementary preservice mathematics teachers' representation about fraction. 38 elementary preservice mathematics teachers participated in this study. This study results showed that, the only model of a fraction that was familiar to the preservice teachers was the part of whole one. And research showed that, they solved the problems about fraction well using algorithms but seldom express the sentence which illustrates the meaning of the operation by a fraction. Specially, the division aspect of a fraction was not familiar nor readily accepted. It menas that preservice teachers are used to using algorithms without a conceptual understanding of the meaning of the operation by a fraction. This results give us some implications. Most of all, teaching programs in preservice mathematics teachers education have to devise to form a network among the concepts in relation to fraction. And we must emphasize how to teach and what to teach in preservice mathematics teachers education course. Finally, we have to invent the various materials which can be used to educate both preservice teachers and elementary school students. If we want to improve the mathematical ability of students, we will concentrate preservice teachers education.
The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.
A case study was conducted to investigate the understandings of the subject matter knowledge and pedagogical content knowledge held by 63 elementary preservice teachers in dealing with the division by a fraction. The study results showed that, in terms of the subject matter knowledge, the preservice teachers did not have a conceptual understanding of the division by a fraction and, in terms of the pedagogical content knowledge, they depended heavily on algorithms without a conceptual understanding of the meaning of the division by a fraction.
In this paper, we investigate distribution strategies in the Egyptian fraction, and through this, we examine the distribution strategies of (fraction)÷(fraction) and then provide some educational implications. The (natural number)÷(natural number) of the sharing situation has the meaning of 'share' per unit, which can be seen as a situation where the unit ratio is determined. These concepts can also naturally be extended to the case of (fraction)÷(fraction) by some problem posing situations. That is to say, the case of (fraction)÷(fraction) can be deduced the case (natural number)÷(natural number) by the re-statement of the problem.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.1
/
pp.105-122
/
2014
In this paper, fraction division algorithms in Korean elementary mathematics textbooks are analyzed as a part of the groundwork to improve teaching methods for fraction division algorithms. There are seemingly six fraction division algorithms in ${\ll}Math\;5-2{\gg}$, ${\ll}Math\;6-1{\gg}$ textbooks according to the 2006 curriculum. Four of them are standard algorithms which show the multiplication by the reciprocal of the divisors modally. Two non-standard algorithms are independent algorithms, and they have weakness in that the integration to the algorithms 8 is not easy. There is a need to reconsider the introduction of the algorithm 4 in that it is difficult to think algorithm 4 is more efficient than algorithm 3. Because (natural number)${\div}$(natural number)=(natural number)${\times}$(the reciprocal of a natural number) is dealt with in algorithm 2, it can be considered to change algorithm 7 to algorithm 2 alike. In textbooks, by converting fraction division expressions into fraction multiplication expressions through indirect methods, the principles of calculation which guarantee the algorithms are explained. Method of using the transitivity, method of using the models such as number bars or rectangles, method of using the equivalence are those. Direct conversion from fraction division expression to fraction multiplication expression by handling the expression is possible, too, but this is beyond the scope of the curriculum. In textbook, when dealing with (natural number)${\div}$(proper fraction) and converting natural numbers to improper fractions, converting natural numbers to proper fractions is used, but it has been never treated officially.
Journal of Elementary Mathematics Education in Korea
/
v.22
no.4
/
pp.385-403
/
2018
Fraction division can be categorized as partitive division, measurement division, and the inverse of a Cartesian product. In the contexts of quotitive division and the inverse of a Cartesian product, the multiply-by-the-reciprocal algorithm is drawn well out. In this study, I analyze the potential and significance of the method of using $1{\div}$(divisor) as an alternative way of developing the multiply-by-the-reciprocal algorithm in the context of quotitive division. The method of using $1{\div}$(divisor) in quotitive division has the following advantages. First, by this method we can draw the multiply-by-the-reciprocal algorithm keeping connection with the context of quotitive division. Second, as in other contexts, this method focuses on the multiplicative relationship between the divisor and 1. Third, as in other contexts, this method investigates the multiplicative relationship between the divisor and 1 by two kinds of reasoning that use either ${\frac{1}{the\;denominator\;of\;the\;divisor}}$ or the numerator of the divisor as a stepping stone. These advantages indicates the potential of this method in understanding the multiply-by-the-reciprocal algorithm as the common structure of fraction division. This method is based on the dual meaning of a fraction as a quantity and the composition of times which the current elementary mathematics textbook does not focus on. It is necessary to pay attention to how to form this basis when developing teaching materials for fraction division.
The purpose of this study is to develop instructional methods for the formalized algorithm through informal knowledge in teaching division of fractions. The following results have been drawn from this study: First, before students learn formal knowledge about division of fractions, they knowledge or strategies to solve problems such as direct modeling strategies, languages to reason mathematically, and using operational expressions. Second, students could solve problems using informal knowledge which is based on partitioning. But they could not solve problems as the numbers involved in problems became complex. In the beginning, they could not reinvent invert-and-multiply rule only by concrete models. However, with the researcher's guidance, they can understand the meaning of a reciprocal number by using concrete models. Moreover, they had an ability to apply the pattern of solving problems when dividend is 1 into division problems of fractions when dividend is fraction. Third, instructional activities were developed by using the results of the teaching experiment performed in the second research step. They consist of student's worksheets and teachers' guides. In conclusion, formalizing students' informal knowledge can make students understand formal knowledge meaningfully and it has a potential that promote mathematical thinking. The teaching-learning activities developed in this study can be an example to help teachers formalize students' informal knowledge.
Double scale models have been introduced in elementary mathematics textbooks under the 2015 revised mathematics curriculum. However, few studies have examined in detail how students understand or utilize such models. In this study, we analyzed how 154 sixth-grade students who had learned the division of fractions from textbooks containing double scale models understood such models. The results showed that the students tended to identify the components of the model relatively well, but had difficulties exploring the unit or the meaning of the bottom number line of a model. They also had a lot of difficulties using the double scale model to complete the computation process and explain the computation principle. Based on these findings, we discuss the implications of teaching double scale models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.