• Title/Summary/Keyword: meander antenna

Search Result 110, Processing Time 0.028 seconds

Optimized Design of a Tag Antenna for RFID using a Meander Line (미앤더 라인을 이용한 RFID 태그 안테나 최적 설계)

  • Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2293-2298
    • /
    • 2011
  • In this paper, A tag antenna structure for RFID application with resonant frequency of 920MHz is proposed using the meander line technique and Evolution Strategy. Miniaturization structure design for a tag antenna is performed by structure combining the half-wave dipole with a meander line. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is made for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The optimized tag antenna size is 63mm ${\times}$ 15mm ${\times}$ 1mm. And the proposed antenna is realized on FR-4 substrate (${\epsilon}_r=4.4$, $tna{\delta}=0.02$).

Triple-band Compact Chip Antenna Using Parasitic Meander line and Stacked Meander line for GPS/IMT2000/Wireless LAN (기생 미엔더 라인과 적층 미엔더 라인을 이용한 GPS/IMT2000/Wireless LAN 삼중대역 소형 칩 안테나)

  • Kim Ho-Yong;Lee Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.156-161
    • /
    • 2006
  • In this paper, GPS/IMT2000/Wireless LAN compact chip antenna is designed for mobile communication system. The proposed antenna size is $10.2mm{\times}21mm{\times}1mm$. It consists of three meander lines. dual resonance frequencies is achieved by two effective current paths using two meander lines and via. also The parasitic meander line structure is added. The coupling is adjusted by arranging parasitic meander line for triple-band. The fabricated antenna achieve triple-band. The resonance frequencies are 1.672GHz, 2.092GHz, 2.504GHz. The impedance bandwidths of each resonance frequencies are 156MHz, 272MHz, 64MHz. The maximum radiation gains of fabricated antenna are 0.08dBi, 1.67dBi, -1.44dBi. The proposed antenna achieve quasi monopole radiation pattern.

Triple-band Compact Chip Antenna Using Coupled Meander-line Structure for Mobile RFID/PCS/WiBro (결합 미엔더 선로를 이용한 모바일 RFID/PCS/WiBro 삼중 대역 소형 칩 안테나)

  • Lim Hyoung-Jun;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.178-183
    • /
    • 2006
  • The proposed triple-band compact chip antenna using coupled meander line and stacked meander structure for mobile RFID/PCS/WiBro. The proposed antenna is designed to operate at 900, 1,800, and 2,350 MHz, and is realized by parasitic coupled and stacked a meander line. Meander lines are using extend length of effective current path more than monopole and contribute miniaturization. The coupled meander line controls the excitations of the mobile RFID and PCS, stacked meander line controls the excitation of the WiBro. The fabricated antenna size is $10.98{\times}22.3{\times}0.98\;mm$. The resonance frequencies are 905 MHz, 1.77 GHz and 2.32 GHz. The impedance bandwidths are 24 MHz, 140 MHz and 92 MHz. The maximum gains of antenna are 0.34 dBi, 2.58 dBi and 0.4 dBi at resonance frequencies.

A Study on Miniaturization of a Log-Periodic Dipole Array Antenna (대수주기 다이폴 배열 안테나의 소형화 연구)

  • Ham, Hyung-Jun;Ryu, Hong-Kyun;Park, Beom-Jun;Park, Young-Ju;Lee, Kyu-Song;Woo, Jong-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.709-720
    • /
    • 2014
  • In this paper, we studied miniaturization of LPDA(Log-Periodic Dipole Array) antenna used for VHF and UHF bands. To miniaturize the LPDA antenna, in this study, the radiation elements in a low frequency were changed into a triangular meander structure which has small current cancelation effect at feed part. For the triangular meander structure, an isosceles triangular and right triangular meander structures were proposed and the LPDA antennas were miniaturized by using the two meander structures. Also, the simulated and measured results were compared for the two miniaturized LPDA antennas. As a result, the isosceles triangular meander and right angle triangular meander structure applied LPDA antennas were reduced up to 60.5 % and 72.4 % compared a basic LPDA antenna, respectively. Consequently, we confirmed that the triangular meander structure is suitable for miniaturization of a LPDA antenna.

Design of Dual-Band Chip Antenna using LTCC Multilayer Technology (LTCC 적층 기술을 이용한 이중대역 칩 안테나의 설계)

  • Kim Young Do;Won Chung Ho;Lee Hong Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.19-24
    • /
    • 2005
  • This paper presents design simulation, implementation, and measurement of a miniaturized GPS/K-PCS dual-band LTCC chip antenna for mobile communication handsets. The dimension of LTCC chip antenna is $9mm\times15mm\times1.2mm$. The meander type radiating patch for dual-band operation is realized by using via holes with 0.3mm height to connect upper and lower-layer antenna. The lower meander type antenna is to be tuned to the lower frequency (GPS) band. The upper meander antenna with via hole connection is to contribute the higher frequency (K-PCS) band. The resonant frequency and frequency ratio of the proposed antenna can be adjusted by changing the height of via-hole and effective path of meander radiating patch. The electrical characteristics of the meander chip antenna applied to a GPS/K-PCS are suitable for mobile communication application.

Design of a Small Radio Frequency Identification Tag Antenna Using a Corrugated Meander Line Applicable to a Drug Runout Sensor System

  • Ko, Dong-Ok;Woo, Jong-Myung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • This article proposes an ultrahigh frequency band radio frequency identification (RFID) tag antenna for drug runout management that can be used in hospitals. The RFID tag antenna is designed to function as a sensor that alerts drug runout when a drug inside a drip chamber is completely consumed but does not work when a drug remains inside a drop chamber. A previously proposed 915 MHz dipole antenna, is too large to be attached to the drip chamber of a feeding bag. Moreover, the length of the dipole (L) should be increased for conjugate matching with an RFID chip. Therefore, the dipole antenna is downsized so that it can be attached to the drip chamber through a fine meander line structure coupling with a corrugate meander line. A transparent cover is added to enhance the grip force between the designed antenna and the drip chamber and to enable detachment. The dimensions of the completed antenna structure attachable to a drip chamber are 32.59 mm (height) and 13.5 mm (width). The gain reduction due to the decreased antenna length is enhanced. The fabricated antenna shows an average omni-directional read range of 10.65 m on a horizontal plane and has the function of sensing the presence of a drug.

Compact Multiple Meander RFID Tag Antenna with Broadband Characteristic (광대역 특성을 가지는 초소형 다중 미앤더 형태의 RFID 태그 안테나)

  • Jung, Hak-Joo;Lee, Sang-Woon;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.971-978
    • /
    • 2010
  • In this paper, we propose a compact multiple meander RFID tag antenna with broadband characteristic. The proposed tag antenna has been designed using the multiple meander form to effectively minimize the U-shaped half wavelength dipole antenna as the radiator part. The commercial tag chip is attached to the upper center of the rectangular shaped feed for impedance matching. The size of the antenna is $20{\times}19.7\;mm^2$ and VSWR<5.8 bandwidth is 855~964 MHz which covers the world UHF RFID bandwidth.

The Properties of Open-Ended Meander Slot Antenna and its Applications to Antenna Design

  • Lee, Young-Soon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.563-568
    • /
    • 2011
  • The various properties such as the electric current distribution, resonant frequency and radiation patterns of open-ended meander slot antenna placed on a small ground plane, are investigated to give the help in performing antenna design. Based upon these characteristics, the designed antenna which is only 22mm($0.06{\lambda}_g$) in height and 31mm($0.09{\lambda}_g$) in width can operate at the 433 MHz with the measured radiation efficiency of 8% and end-fire radiation pattern. These properties make the antenna suitable for the handheld device such as the wireless remote controller.

Multiple Meander Strip Monopole Antenna with Broadband Characteristic (광대역 특성의 다중 미앤더 스트립 모노폴 안테나)

  • 이윤호;정종호;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.89-95
    • /
    • 2004
  • In this paper, we proposed a multiple meander strip monopole antenna. Using meander strip structure, we could broaden the impedance bandwidth and reduce the antenna height. The proposed antenna has broad bandwidth, from 2.9 ㎓ to 10.85 ㎓, for VSWR $\leq$ 2 and has vertically polarized omnidirectional conical beam radiation pattern, which is suitable for UWB wireless systems.

Design of Meander Chip Antenna with Gap Stub for Dual-Band(GPS/K-PCS) Operation (갭 스터브가 삽입된 이중 대역(GPS, K-PCS) 미엔더 칩 안테나 설계)

  • Kim Young-Do;Sin Kyung-Sup;Won Chung-ho;Lee Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • This paper presents design simulation, implementation, and measurement of a miniaturized GPS/K-PCS dual-band LTCC chip antenna for mobile communication handsets. The dimension of LTCC chip antenna is $9mm{\times}15mm{\times}1.2mm$. The lower meander type antenna is to be tuned to the lower frequency (GPS) band and the upper meander antenna with via hole connection is to contribute the higher frequency (K-PCS) band. In order to lowering the resonant frequency for GPS band, two printed modified meander antenna with gap stub is used to integrate with PCS band operation. The measured resonant frequency at GPS band shifts to lower frequency about 100MHz. The measured impedance bandwidth(VSWR $\leq$ 2) are 55MHz and 120MHz at the resonant frequency. respectively.

  • PDF