• Title/Summary/Keyword: mean strain energy

Search Result 49, Processing Time 0.024 seconds

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

Numerical analysis of a turbulent boundary layer with pressure gradient using Reynolds-transport turbulence model (레이놀즈 응력모델을 이용한 압력구배가 있는 난류경계층의 유동장 해석)

  • Lee, Seong-Hyeok;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.280-293
    • /
    • 1998
  • Numerical study on turbulent and mean structures of a turbulent boundary layer with longitudinal and spanwise pressure gradient is carried out by using Reynolds-stress-model (RSM). The existence of pressure gradient in a turbulent boundary layer causes the skewing or divergence of rates of strain, which contributes to production of turbulent kinetic energy. Also, this augmentation of production due to extra rates of strain can increase the turbulent mixing and cause the anisotropy of turbulent intensities in the outer layer. This paper uses the Reynolds Stress Model to capture anisotropy of turbulent structures effectively and is devoted to compare the results computed by using RSM and the standard k-.epsilon. model with experimental data. It is concluded that the RSM can produce the more accurate predictions for capturing the anisotropy of turbulent structure than the standard k-.epsilon. model.

Determination of pressure-Dependent Yield . Criterion for Polymeric Foams (폴리머 폼 재료의 정수압 종속 항복조건 결정에 관한 연구)

  • 김영민;강신일
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • In addition to lightweight and moldable characteristics, polymeric foams possess an excellent energy absorbing capability that can be utilize for a wide range of commercial applications, especially in the crashworthiness of the automobiles. The purpose of the present study is to develop experimental methodology to characterize the pressure dependent yield behavior of the energy absorbing polymeric foams. For the compression test in a triaxial stress sate, a specially designed device was placed in a hydraulic press to produce and control oil pressure. For the test material, the polyurethane foams of two different densities were used. The displacement of the specimen, the load subjected to the specimen, and oil pressure applied to the specimen were measured and controlled. Stress strain curves and yield stresses for the four different oil pressure were obtained. It was found from the present experiments that the polyurethane foams exhibited significant increases in yield stress with applied pressure or mean normal stress. Based on this observation, a yield criteria which included the effect of the stress invariant were established for the polymeric foams. The obtained experimental constants which constituted the pressure-dependent yield criterion were verified.

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Long Time Creep Strength and Life Prediction of Steam Turbine Rotor Steel by Initial Strain Method (화력발전용 로터강의 초기 변형률법에 의한 장시간 크리프 수명 및 강도 예측)

  • 오세규;정순억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1321-1329
    • /
    • 1993
  • Long time creep strength and life prediction of 1% Cr-Mo-V and 12% Cr rotor steel were performed by using round-bar type specimens under static load at 500-600.deg. C TTP (time temperature parameter), MCM (minimum commitment method) and ISM (initial strain method newly devised) as life prediction methods were investigated, and the results could be summarized as follows. (1) The minimum parameter of SEE (standard error) by TTP was proved as LMP (larson-miller parameter), and the minimum parameter of RMS (root mean squares), by data less than 10$^{3}$hrs was MHP (manson-haferd parameter). (2) The parameters of the minimum and the maximum strength values predicted in $10^{5}$hrs creep life of 1% Cr-Mo-V steel by TTP were LMP and MSP, respectively. In case of 12% Cr steel above $550^{\circ}C$ OSDP (orr-sherby-dorn parameter) was minimum and MSP (manson-succop parameter) was maximum, but below $550^{\circ}C$, the inverse phenomena was observed. On the other hand the creep strengths before $10^{3}hrs$ life by MCM were similar to those by TTP, but the strengths after $10^{3}hrs$ life were 10-25% lower than those by TTP. (3) Creep strengths by ISM were maximum 5% lower than those by TTP. Because $10^{5}hrs$ strengths were similar to those of the lower band by TTP, the ISM was safer than the TTP.

Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process

  • Jeong, Han Byeol;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.882-889
    • /
    • 2021
  • In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→ C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.

Paleostress Inferred from Calcite Twins in the Pungchon Limestone, Joseon Supergroup (조선누층군 풍촌석회암 방해석 쌍정에서 유추된 고응력장)

  • Kang, Seong-Seung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2022
  • Calcite twins were analyzed in six oriented samples of the Pungchon limestone, Joseon Supergroup, to reconstruct the paleostress field. The orientations of c-axis of calcite and e twin plane were measured along with the average thickness and numbers of twins, and the widths of calcite grains. Twin strain, mean width, and intensity of twinning, and the relative magnitude and orientations of principal stresses were calculated using Calcite Strain Gauge program. Twin strain, mean width, and intensity of twinning showed ranges of 1.09-15.36%, 0.53-3.72 ㎛ and 21.0-53.1 twim/mm, respectively. Metamorphic temperatures calculated from the twins were 170-200℃, indicating that the twins developed after the Pungchon limestone was uplifted to at least half of the maximum burial depth. Results for five of the samples indicate that the calcite twins formed during two events with principal stress axes of different orientations, while the remaining sample recorded only one event that produced calcite twins. The axis of maximum compressive stress was oriented mainly WNW-ESE to ENE-WSW, and to a lesser degree NW-SE and NE-SW. Comparison of paleostress orientations measured here and in other studies indicates that most twins were produced during the Songrim orogeny. However, the Daebo orogeny and the Bulguksa orogeny also produced calcite twins in the Punchon limestone.