• Title/Summary/Keyword: mean square slope

Search Result 62, Processing Time 0.026 seconds

A Study on Wearing Conditions and Dissatisfaction with Breast Cap for Current Womens Swimsuits (여성 수영복용 브래스트캡의 착용실태 및 불만족도에 관한 연구)

  • 노정화;최혜선;도월희
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.7
    • /
    • pp.47-55
    • /
    • 2003
  • The purpose of this study was to provide information on how to improve the comfort and fit of womens swimsuits through analysis of the present wearing conditions and users complaints. In order to compile the information about dissatisfaction with the appropriateness of the fit of breast cap for swimsuits, a questionnaire was administered to 364 females (over 20 years old under 60 years old). The contents of the questionnaire consisted of questions such as the reasons for selecting to wear breast cap for swimsuits or not, size of brassiere and swimsuits, dissatisfaction with material, dissatisfaction with function of breast cap. The collected data were analyzed using the descriptive statistics value of frequencies and percentile value, mean, and so on by means of the SPSS WIN.10.0 program. The differences among age groups, body type groups by rohrer index, cup size and so on were compared using the chi-square test. Results of the survey responses about swimsuits breast caps: Most women have worn swimsuits with caps. According to the results, women who are older or overweight, or have larger breasts, or breasts which sag, as well as those who have had the experience of giving birth responded that they feel uncomfortable because of the slope of their breasts. Concerning complaints about the caps, 61% of respondents complained about the cap size and lack of correspondence with breast size, 56.8% expressed concern about the cap gap. There is significant difference in wearing reason of breast caps forswimsuits among age groups and many kinds of groups.

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2022
  • This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

Analysis on Electromyogram(EMG) Signals by Body Parts for G-induced Loss of Consciousness(G-LOC) Prediction (G-induced Loss of Consciousness(G-LOC) 예측을 위한 신체 부위별 Electromyogram(EMG) 신호 분석)

  • Kim, Sungho;Kim, Dongsoo;Cho, Taehwan;Lee, Yongkyun;Choi, Booyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2017
  • G-induced Loss of Consciousness(G-LOC) can be predicted by measuring Electromyogram(EMG) signals. Existing studies have mainly focused on specific body parts and lacked of consideration with quantitative EMG indices. The purpose of this study is to analyze the indices of EMG signals by human body parts for monitoring G-LOC condition. The data of seven EMG features such as Root Mean Square(RMS), Integrated Absolute Value(IAV), and Mean Absolute Value(MAV) for reflecting muscle contraction and Slope Sign Changes(SSC), Waveform Length (WL), Zero Crossing(ZC), and Median Frequency(MF) for representing muscle contraction and fatigue was retrieved from high G-training on a human centrifuge simulator. A total of 19 trainees out of 47 trainees of the Korean Air Force fell into G-LOC condition during the training in attaching EMG sensor to three body parts(neck, abdomen, calf). IAV, MAV, WL, and ZC under condition after G-LOC were decreased by 17 %, 17 %, 18 %, and 4 % comparing to those under condition before G-LOC respectively. Also, RMS, IAV, MAV, and WL in neck part under condition after G-LOC were higher than those under condition before G-LOC; while, those in abdomen and calf part lower. This study suggest that measurement of IAV and WL by attaching EMG sensor to calf part may be optimal for predicting G-LOC.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea (제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가)

  • Park, Jun Sang;Seo, Yun Am;Kim, Kyu Rang;Ha, Jong-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.262-276
    • /
    • 2018
  • Models to predict Leaf Wetness Duration (LWD) were evaluated using the observed meteorological and dew data at the 11 citrus orchards in Jeju, South Korea from 2016 to 2017. The sensitivity and the prediction accuracy were evaluated with four models (i.e., Number of Hours of Relative Humidity (NHRH), Classification And Regression Tree/Stepwise Linear Discriminant (CART/SLD), Penman-Monteith (PM), Deep-learning Neural Network (DNN)). The sensitivity of models was evaluated with rainfall and seasonal changes. When the data in rainy days were excluded from the whole data set, the LWD models had smaller average error (Root Mean Square Error (RMSE) about 1.5hours). The seasonal error of the DNN model had the similar magnitude (RMSE about 3 hours) among all seasons excluding winter. The other models had the greatest error in summer (RMSE about 9.6 hours) and the lowest error in winter (RMSE about 3.3 hours). These models were also evaluated by the statistical error analysis method and the regression analysis method of mean squared deviation. The DNN model had the best performance by statistical error whereas the CART/SLD model had the worst prediction accuracy. The Mean Square Deviation (MSD) is a method of analyzing the linearity of a model with three components: squared bias (SB), nonunity slope (NU), and lack of correlation (LC). Better model performance was determined by lower SB and LC and higher NU. The results of MSD analysis indicated that the DNN model would provide the best performance and followed by the PM, the NHRH and the CART/SLD in order. This result suggested that the machine learning model would be useful to improve the accuracy of agricultural information using meteorological data.

Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area (수도권 AWS 기온을 이용한 MODIS, Landsat 위성의 지표면 온도 분석)

  • Jee, Joon-Bum;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.315-329
    • /
    • 2014
  • In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

  • Park, Tae-Jin;Lee, Woo-Kyun;Lee, Jong-Yeol;Hayashi, Masato;Tang, Yanhong;Kwak, Doo-Ahn;Kwak, Han-Bin;Kim, Moon-Il;Cui, Guishan;Nam, Ki-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.307-318
    • /
    • 2012
  • To understand forest structures, the Geoscience Laser Altimeter System (GLAS) instrument have been employed to measure and monitor forest canopy with feasibility of acquiring three dimensional canopy structure information. This study tried to examine the potential of GLAS dataset in measuring forest canopy structures, particularly maximum canopy height estimation. To estimate maximum canopy height using feasible GLAS dataset, we simply used difference between signal start and ground peak derived from Gaussian decomposition method. After estimation procedure, maximum canopy height was derived from airborne Light Detection and Ranging (LiDAR) data and it was applied to evaluate the accuracy of that of GLAS estimation. In addition, several influences, such as topographical and biophysical factors, were analyzed and discussed to explain error sources of direct maximum canopy height estimation using GLAS data. In the result of estimation using direct method, a root mean square error (RMSE) was estimated at 8.15 m. The estimation tended to be overestimated when comparing to derivations of airborne LiDAR. According to the result of error occurrences analysis, we need to consider these error sources, particularly terrain slope within GLAS footprint, and to apply statistical regression approach based on various parameters from a Gaussian decomposition for accurate and reliable maximum canopy height estimation.