• 제목/요약/키워드: mean integrated square error

검색결과 61건 처리시간 0.021초

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

The Bandwidth from the Density Power Divergence

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.435-444
    • /
    • 2014
  • The most widely used optimal bandwidth is known to minimize the mean integrated squared error(MISE) of a kernel density estimator from a true density. In this article proposes, we propose a bandwidth which asymptotically minimizes the mean integrated density power divergence(MIDPD) between a true density and a corresponding kernel density estimator. An approximated form of the mean integrated density power divergence is derived and a bandwidth is obtained as a product of minimization based on the approximated form. The resulting bandwidth resembles the optimal bandwidth by Parzen (1962), but it reflects the nature of a model density more than the existing optimal bandwidths. We have one more choice of an optimal bandwidth with a firm theoretical background; in addition, an empirical study we show that the bandwidth from the mean integrated density power divergence can produce a density estimator fitting a sample better than the bandwidth from the mean integrated squared error.

Segment Training Based Individual Channel Estimation for Multi-pair Two-Way Relay Network with Power Allocation

  • He, Xiandeng;Zhou, Ronghua;Chen, Nan;Zhang, Shun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.566-578
    • /
    • 2018
  • In this paper, we design a segment training based individual channel estimation (STICE) scheme for the classical two-way relay network (TWRN) with multi-pair sources (MPS) and amplify-and-forward (AF). We adopt the linear minimum mean square error (LMMSE) channel estimator to minimize the mean square error (MSE) without channel estimation error, where the optimal power allocation strategy from the relay for different sources is obtained. Then the MSE gains are given with different source pairs among the proposed power allocation scheme and the existing power allocation schemes. Numerical results show that the proposed method outperforms the existing ones.

이차 변수 오차 모형의 예측분석 (Prediction Analysis of the Quadratic Errors-in-Variables Model)

  • 변재현;이승훈
    • 품질경영학회지
    • /
    • 제21권1호
    • /
    • pp.152-160
    • /
    • 1993
  • In developing a quadratic regression relationship, independent variable is frequently measured with error. In this paper the integrated mean square error of prediction is developed for a quadratic functional relationship model as a measure of the effect of measurement error of the independent variable on the predicted values. The amount of the effect of error is presented and illustrated with an example.

  • PDF

Estimation in the exponential distribution under progressive Type I interval censoring with semi-missing data

  • Shin, Hyejung;Lee, Kwangho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1271-1277
    • /
    • 2012
  • In this paper, we propose an estimation method of the parameter in an exponential distribution based on a progressive Type I interval censored sample with semi-missing observation. The maximum likelihood estimator (MLE) of the parameter in the exponential distribution cannot be obtained explicitly because the intervals are not equal in length under the progressive Type I interval censored sample with semi-missing data. To obtain the MLE of the parameter for the sampling scheme, we propose a method by which progressive Type I interval censored sample with semi-missing data is converted to the progressive Type II interval censored sample. Consequently, the estimation procedures in the progressive Type II interval censored sample can be applied and we obtain the MLE of the parameter and survival function. It will be shown that the obtained estimators have good performance in terms of the mean square error (MSE) and mean integrated square error (MISE).

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • 제9권1호
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

국소 선형 복합 분위수 회귀에서의 평활계수 선택 (Selection of bandwidth for local linear composite quantile regression smoothing)

  • 전명식;강종경;방성완
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.733-745
    • /
    • 2017
  • 국소복합분위수 회귀모형을 활용한 비모수적 함수 추정방법이 높은 효율성과 더불어 활발히 연구되고 있다. 이러한 추정과정에 커널을 사용한 자료 평활방법이 대표적으로 사용되고 있으며, 그 성능은 커널보다는 평활계수의 선택 크게 의존한다. 한편, 회귀함수 추정방법의 성능을 평가하는 기준으로는 통상적으로 $L_2$-노름이 사용되어 평균제곱오차 또는 평균적분제곱오차를 최소화하는 평활계수의 선택에 대한 많은 연구가 진행되어 왔다. 본 논문에서는 국소선형 복합 분위수 회귀방법을 활용한 비모수 회귀모형 추정량의 성능을 결정하는 평활계수 선택의 최적성에 관해 연구하였다. 특히, 여러 장점을 가졌으나 수리적 어려움으로 연구가 미흡한 평균절대오차 및 평균적분절대오차를 최적의 기준으로 삼아 최적의 평활계수를 구하고 그 유일성에 관해 연구하였다. 나아가 기존의 평가기준인 평균제곱오차 및 평균적분제곱오차를 사용한 선택과의 관계를 파악하고 그 성능을 비교하였다. 이러한 과정에서 다양한 상황에서의 모의실험을 통해 제안한 방법의 특성을 규명하였다.

가야금 안족의 위치에 따른 개선된 주파수 모델링 (An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum)

  • 권순덕;조상진
    • 한국음향학회지
    • /
    • 제33권2호
    • /
    • pp.146-151
    • /
    • 2014
  • 본 논문은 기존의 가야금 안족 모델을 분석하고 안족의 위치에 따른 주파수 모델링을 개선하기 위한 방법에 대해서 기술한다. 기존의 모델은 안족의 위치별 기본 주파수의 변화를 지수 함수로 가정, 리키 적분기를 이용하여 이들 주파수를 적분한 후 선형 회귀 모델을 이용하여 주파수와 안족의 위치에 관한 수식의 파라미터를 구하였다. 이 모델은 평균적으로 2.5 Hz의 오차를 보였으나 낮은 주파수에 대해서는 최대 7.75 Hz의 오차를 보였다. 이에 제안하는 모델은 안족의 위치를 세부 구간으로 나누고 각 구간 내 누적 주파수에 대한 선형 회귀 모델을 적용하였고, 리키 적분기의 계수를 바꿔가며 안족 위치의 세부 구간 내 각 현의 기본 주파수와 계산된 주파수간 RMSE(Root Mean Square Error)가 최소가 되는 계수를 찾음으로써 최적의 파라미터를 구하였다. 이러한 과정을 통해 얻어진 모델은 기존의 오차를 최대 3배가량 줄일 수 있었다.

표준자료 산출시 작업특성치의 오차가 총작업시간의 예측에 미치는 영향평가 (Evaluation of the Effect of Errors in Job Characteristics on the Predicted Total Task Time in Standard Data Systems)

  • 변재현;염봉진
    • 대한산업공학회지
    • /
    • 제17권2호
    • /
    • pp.97-105
    • /
    • 1991
  • In developing a regression relationship for a standard data system in work measurement, job characteristics are frequently measured with error when measurements are made in the field under less controlled conditions or when accurate instruments are not available. This paper concerns with the prediction of the total task time when job characteristics are measured with error. Integrated mean square error of prediction(IMSE) is developed as a measure of the effect of errors in job characteristics on the predicted total task time. By evaluating how IMSE is affected by the measurement error in each job characteristic, we can determine which error should be controlled to develop a desirable standard data system.

  • PDF

Nonparametric Estimation of Distribution Function using Bezier Curve

  • Bae, Whasoo;Kim, Ryeongah;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.105-114
    • /
    • 2014
  • In this paper we suggest an efficient method to estimate the distribution function using the Bezier curve, and compare it with existing methods by simulation studies. In addition, we suggest a robust version of cross-validation criterion to estimate the number of Bezier points, and showed that the proposed method is better than the existing methods based on simulation studies.