• Title/Summary/Keyword: mean integrated square error

Search Result 61, Processing Time 0.028 seconds

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

The Bandwidth from the Density Power Divergence

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.435-444
    • /
    • 2014
  • The most widely used optimal bandwidth is known to minimize the mean integrated squared error(MISE) of a kernel density estimator from a true density. In this article proposes, we propose a bandwidth which asymptotically minimizes the mean integrated density power divergence(MIDPD) between a true density and a corresponding kernel density estimator. An approximated form of the mean integrated density power divergence is derived and a bandwidth is obtained as a product of minimization based on the approximated form. The resulting bandwidth resembles the optimal bandwidth by Parzen (1962), but it reflects the nature of a model density more than the existing optimal bandwidths. We have one more choice of an optimal bandwidth with a firm theoretical background; in addition, an empirical study we show that the bandwidth from the mean integrated density power divergence can produce a density estimator fitting a sample better than the bandwidth from the mean integrated squared error.

Segment Training Based Individual Channel Estimation for Multi-pair Two-Way Relay Network with Power Allocation

  • He, Xiandeng;Zhou, Ronghua;Chen, Nan;Zhang, Shun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.566-578
    • /
    • 2018
  • In this paper, we design a segment training based individual channel estimation (STICE) scheme for the classical two-way relay network (TWRN) with multi-pair sources (MPS) and amplify-and-forward (AF). We adopt the linear minimum mean square error (LMMSE) channel estimator to minimize the mean square error (MSE) without channel estimation error, where the optimal power allocation strategy from the relay for different sources is obtained. Then the MSE gains are given with different source pairs among the proposed power allocation scheme and the existing power allocation schemes. Numerical results show that the proposed method outperforms the existing ones.

Prediction Analysis of the Quadratic Errors-in-Variables Model (이차 변수 오차 모형의 예측분석)

  • Byeon, Jae-Hyeon;Lee, Seung-Hun
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.152-160
    • /
    • 1993
  • In developing a quadratic regression relationship, independent variable is frequently measured with error. In this paper the integrated mean square error of prediction is developed for a quadratic functional relationship model as a measure of the effect of measurement error of the independent variable on the predicted values. The amount of the effect of error is presented and illustrated with an example.

  • PDF

Estimation in the exponential distribution under progressive Type I interval censoring with semi-missing data

  • Shin, Hyejung;Lee, Kwangho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1271-1277
    • /
    • 2012
  • In this paper, we propose an estimation method of the parameter in an exponential distribution based on a progressive Type I interval censored sample with semi-missing observation. The maximum likelihood estimator (MLE) of the parameter in the exponential distribution cannot be obtained explicitly because the intervals are not equal in length under the progressive Type I interval censored sample with semi-missing data. To obtain the MLE of the parameter for the sampling scheme, we propose a method by which progressive Type I interval censored sample with semi-missing data is converted to the progressive Type II interval censored sample. Consequently, the estimation procedures in the progressive Type II interval censored sample can be applied and we obtain the MLE of the parameter and survival function. It will be shown that the obtained estimators have good performance in terms of the mean square error (MSE) and mean integrated square error (MISE).

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.

Evaluation of the Effect of Errors in Job Characteristics on the Predicted Total Task Time in Standard Data Systems (표준자료 산출시 작업특성치의 오차가 총작업시간의 예측에 미치는 영향평가)

  • Byun, Jai-Hyun;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.97-105
    • /
    • 1991
  • In developing a regression relationship for a standard data system in work measurement, job characteristics are frequently measured with error when measurements are made in the field under less controlled conditions or when accurate instruments are not available. This paper concerns with the prediction of the total task time when job characteristics are measured with error. Integrated mean square error of prediction(IMSE) is developed as a measure of the effect of errors in job characteristics on the predicted total task time. By evaluating how IMSE is affected by the measurement error in each job characteristic, we can determine which error should be controlled to develop a desirable standard data system.

  • PDF

Nonparametric Estimation of Distribution Function using Bezier Curve

  • Bae, Whasoo;Kim, Ryeongah;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • In this paper we suggest an efficient method to estimate the distribution function using the Bezier curve, and compare it with existing methods by simulation studies. In addition, we suggest a robust version of cross-validation criterion to estimate the number of Bezier points, and showed that the proposed method is better than the existing methods based on simulation studies.