• Title/Summary/Keyword: mean daily temperature

Search Result 466, Processing Time 0.032 seconds

Site - Specific Frost Warning Based on Topoclimatic Estimation of Daily Minimum Temperature (지형기후모형에 근거한 서리경보시스템 구축)

  • Chung Uran;Seo Hee Cheol;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.164-169
    • /
    • 2004
  • A spatial interpolation scheme incorporating local geographic potential for cold air accumulation (TOPSIM) was used to test the feasibility of operational frost warning in Chatancheon basin in Yeoncheon County, where the introduction of new crops including temperate zone fruits is planned. Air temperature from April to June 2003 was measured at one-minute intervals at four locations within the basin. Cold-air accumulation potentials (CAP) at 4 sites were calculated for 3 different catchment scales: a rectangular area of 65 x 55 km which covers the whole county, the KOWACO (Korea Water Corporation) hydrologic unit which includes all 4 sites, and the sub-basins delineated by a stream network analysis of the digital elevation model. Daily minimum temperatures at 4 sites were calculated by interpolating the perfect prognosis (i.e., synoptic observations at KMA Dongducheon station) based on TOPSIM with 3 different CAPs. Mean error, mean absolute error, and root mean square error were calculated for 45 days with no precipitation to test the model performance. For the 3 flat locations, little difference was detected in model performance among 3 catchment areas, but the best performance was found with the CAPs calculated for sub-basins at one site (Oksan) on complex terrain. When TOPSIM loaded with sub-basin CAPs was applied to Oksan to predict frost events during the fruit flowering period in 2004, the goodness of fit was sufficient for making an operational frost warning system for mountainous areas.

A Phytogeographical Study on the Distribution of Bamboos in the Korean Peninsula (韓半島의 대나무類 分布와 그 環境要因에 관한 植物地理學的 硏究)

  • Kong, Woo Seok
    • The Korean Journal of Ecology
    • /
    • v.8 no.2
    • /
    • pp.89-98
    • /
    • 1985
  • Correlations between horizontal distributions of bamboos (Bambusaceae) in the Korean peninsula and environmental factors were studied using taxanomic and geographical literatures, both old and current. The vertical distributions of bamboos on Mt. Chiri were also studied, and environmental factors limiting horizontal and vertical distributions were compared. There are 18 species of bamboos (belonging to 5 genera) distributed in the Korean peninsula. The distributional range of each genus were distinct, although overlapped. Northern limit of bamboos of any species was marked by the line connecting Paikryung Island (124。40'E, 38。00'N), Mt. Changsoo, Mt. Myungji, Mt. Myohyung and Myungchum (129。40'E, 41。10'N). The optimum range of bamboos was concluded to be restricted to several southern province, with annual precipitation over 1,200 mm. The limiting factors on the distribution were inferred to be low temperature and duration of it. Mean daily minimum temperature of January and the number of days with daily mean temperatures below zero during January showed close associations with the distributional range, and an environmental factors favouring the distributrion of bamboos appeared to be vicinity of warm sea current, deep and extended snow acculation and southern exposure. The vertical distribution of bamboos on Mt. Chiri was limited by low temperature, unfavorable topographic and edaphic conditions caused by steep slope. Difference in the vertical limits between SE and NW slopes are caused by the differences in temperature and precipitation between the slopes. Bamboos were more abundant in valleys than on the ridge, apparently because the deeper snow in the valleys protected the plants from low temperature, heavy winter winds and desiccation.

  • PDF

A Study on Acute Effects of Fine Particles on Pulmonary Function of Schoolchildren in Beijing, China

  • Kim, Dae-Seon;Yu, Seung-Do;Cha, Jung-Hoon;Ahn, Seung-Chul
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.193-196
    • /
    • 2004
  • To evaluate the acute effects of fine particles on pulmonary function, a longitudinal study was conducted. This study was carried out for the schoolchildren (3rd and 6th grades) living in Beijing, China. Children were asked to record their daily levels of peak expiratory flow rate using portable peak flow meter (mini-Wright) for 40 days. The relationship between daily PEFR and fine particle levels was analyzed using a mixed linear regression models including gender, height, the presence of respiratory symptoms, and daily average temperature and relative humidity as extraneous variables. The total number of students participating in this longitudinal study was 87. Daily measured PEFR was in the range of $253{\sim}501L/min$. On the daily basis, a PEFR measured in the morning was shown to be lower than that measured in the evening (or afternoon). The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $180.2\;{\mu}g/m^3$ and $103.2\;{\mu}g/m^3$, respectively. The IQR (inter-quartile range) of $PM_{10}$ and $PM_{2.5}$ were $91.8\;{\mu}g/m^3$ and $58.0\;{\mu}g/m^3$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}$ (or $PM_{2.5}$) levels, weather information such as air temperature and relative humidity, and individual characteristics including gender, height, and respiratory symptoms. The analysis showed that the increase of fine particle concentrations was negatively associated with the variability in PEFR. The IQR increments of $PM_{10}$ or $PM_{2.5}$ (at 1-day time lag) were also shown to be related with 1.54L/min (95% Confidence intervals -2.14, -0.94) and 1.56L/min (95% CI -2.16, -0.95) decline in PEFR.

  • PDF

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Seasonal Variation of Cosmic Ray Intensity Observed by the Oulu Neutron Monitor

  • Jeong, Jaesik;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.165-170
    • /
    • 2020
  • Muons and neutrons are representative secondary particles that are generated by interactions between primary cosmic ray particles (mostly protons) and the nuclei of atmospheric gas compounds. Previous studies reported that muons experience seasonal variations because of the meteorological effects of temperature. The intensity of neutrons has a typical modulation with various periods and reasons, such as diurnal and solar variation or transient events. This paper reports that cosmic ray particles, which were observed by neutron monitors, have seasonal variations using the daily data at the Oulu neutron monitor. To eliminate the effects of solar activity across time, the daily data were normalized by two different transformations: transformations with respect to the grand mean and yearly mean. The data after transformation with respect to the yearly mean showed more statistical stability and clear seasonal variations. On the other hand, it is difficult to determine if the seasonal variation results from terrestrial effects, such as meteorological factors, or extraterrestrial effects, such as the position of the Earth in its orbit of revolution.

Analysis on Meteorological Factors related to the Distribution of PM10 Concentration in Busan (부산지역 미세먼지 농도 분포에 따른 기상요소 분석)

  • Kim, Min-Kyoung;Jung, Woo-Sik;Lee, Hwa Woon;Do, Woo-Gon;Cho, Jung-Gu;Lee, Kwi-Ok
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1213-1226
    • /
    • 2013
  • $PM_{10}$ concentration is related to the meteorological variables including to local and synoptic meteorology. In this study the $PM_{10}$ concentrations of Busan in 2007~2011 were analyzed and the days of yellow sand or rainfall which is more than 5 mm were excluded. The sections of $PM_{10}$ concentration were divided according to 10-quantiles, quartiles and 90-quantiles. The 90-quantiles of daily $PM_{10}$ concentration were selected as high concentration dates. In the high concentration dates the daily mean averaged cloudness, mean daily surface wind speed, daily mean surface pressure and PBL height were low and diurnal variation of surface pressure and daily maximum surface temperature were high. When the high $PM_{10}$ dates occurred, the west and south wind blew on the ground and the west wind blew strongly on the 850 hPa. So it seemed that long range transboundary air pollutants made effects on the high concentration dates. The cluster analysis using Hysplit model which is the backward trajectory was made on the high concentration dates. As a result, 3 clusters were extracted and on the short range transboundary cluster the daily mean relative humidity and cloudness were high and PBL height was low.

A Simple Emergence Model of Southern Type Garlic Based on Temperature (온도에 따른 난지형 마늘 출현 모형)

  • Moon, K.H.;Choi, K.S.;Son, I.C.;Song, E.Y.;Oh, S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • We developed a simple model to predict emergence time and emergence rate of southern type garlic using the daily mean temperature. Emergence rate of garlic was decreased and emergence time was delayed on higher temperature than optimum temperature of $12.7^{\circ}C$. In the model, firstly daily emergence rate was calculated using a beta function to input daily mean temperature, then the percentage of garlic emergence was calculated using a nonlinear model with accumulated emergence rate. The model was good to describe the experimental data of growth cabinet. Also it can explain well the experimental data using temperature gradient tunnel, designed for verification of model performance. But there are 5 days of deviation between estimated and measured time of garlic emergence on the field experiment. More research is needed to develop an advanced model considering other factors, such as soil moisture.

Rectal Temperature of Lactating Sows in a Tropical Humid Climate according to Breed, Parity and Season

  • Gourdine, J.L.;Bidanel, J.P.;Noblet, J.;Renaudeau, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.832-841
    • /
    • 2007
  • Rectal Temperature;Thermoregulation;Sows;Breed;The effects of season (hot vs. warm) in a tropical humid climate, parity (primiparous vs. multiparous) and breed (Creole: CR, Large White: LW) on rectal temperature (RT) were studied for a total of 222 lactations obtained in 85 sows (43 CR and 42 LW; 56 primiparous and 166 multiparous) over a 28-d lactation, between June 2002 and April 2005. Mean daily ambient temperature was higher during the hot season than during the warm season (26.0 vs. $24.1^{\circ}C$) and relative humidity was high and similar in both seasons (89% on average). At farrowing, BW was lower (172 vs. 233 kg) and backfat thickness was higher (37 vs. 21 mm) in CR than in LW sows (p<0.01). During the hot season, the reduction of average daily feed intake (ADFI) was more pronounced in LW than in CR sows (-920 vs. -480 g/d, p<0.05). Rectal temperature was higher at 1200 than at 0700hr, which coincides with the maximum and the minimum values of daily ambient temperature. The daily RT increased ($+0.9^{\circ}C$; p<0.01) between d -3 and d 7 (d 0: farrowing day), remained constant between d 7 and d 25 and decreased (p<0.01) thereafter (i.e. $-0.6^{\circ}C$ between d 25 and d 32). The average daily RT was significantly higher during the hot than during the warm season (38.9 vs. $38.6^{\circ}C$; p<0.01). It was not affected by breed, but the difference in RT between the hot and warm seasons was more pronounced in LW than in CR sows (+0.4 vs. $+0.2^{\circ}C$; p<0.05). Parity influenced the RT response; it was greater in primiparous than in multiparous sows (38.9 vs. $38.7^{\circ}C$; p<0.01). This study suggests that thermoregulatory responses to heat stress can differ between breeds and between parities.

Differences in ruminal temperature between pregnant and non-pregnant Korean cattle

  • Kim, Dae Hyun;Ha, Jae Jung;Yi, Jun Koo;Kim, Byung Ki;Kwon, Woo-Sung;Ye, Bong-Hae;Kim, Seung Ho;Lee, Yoonseok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • In recent years, various methods of measuring body temperature have been developed using wireless biosensors to facilitate an early detection of pregnancy and parturition in cows. However, there are no studies on real-time monitoring of cattle body temperature throughout pregnancy. Therefore, we investigated the daily mean ruminal temperature in pregnant cows throughout pregnancy using a ruminal bio-capsule sensor and then evaluated the temperature variation between pregnant and non-pregnant cows. In pregnant cows, the mean and standard deviation of ruminal temperature was 38.86 ± 0.17℃. Ruminal temperature in pregnant cows slowly decreased until 180 to 190 days after artificial insemination and after that, the temperature increased dramatically until just before parturition. Furthermore, the means ruminal temperature was significantly different between pregnant and nonpregnant cows. The mean and standard deviation of ruminal temperature were as follows: 38.68 ± 0.01℃ from days 80 to 100, 38.78 ± 0.02℃ from days 145 to 165, 38.99 ± 0.45℃ from days 200 to 220, 39.14 ± 0.38℃ from days 250 to 270 before parturition. Therefore, our results could provide useful data for early detection of pregnancy and parturition in Korean cows.

Wind Effect on the Distribution of Daily Minimum Temperature Across a Cold Pooling Catchment (냉기호 형성 집수역의 일 최저기온 분포에 미치는 바람효과)

  • Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.277-282
    • /
    • 2012
  • When wind speed exceeds a certain threshold, daily minimum temperature does not drop as predicted by the geospatial model in a cold pooling catchment. A linear regression equation was derived to explain the warming effect of wind speed on daily minimum temperature by analyzing observations at a low lying location within an enclosed catchment. The equation, Y=2X+0.4 ($R^2$=0.76) where Y stands for the warming ($^{\circ}C$) and X for the mean horizontal wind speed (m/s) at 2m height, was combined to an existing model to predict daily minimum temperature across an enclosed catchment on cold pooling days. The adjusted model was applied to 3 locations submerged in a cold air pool to predict daily minimum temperature on 25 cold pooling days with the input of simulated wind speed at each location. Results showed that bias (mean error) was reduced from -1.33 to -0.37 and estimation error (RMSE) from 1.72 to 1.20, respectively, in comparison with those from the unadjusted model.