• Title/Summary/Keyword: mean absolute error

Search Result 576, Processing Time 0.024 seconds

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.1-7
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.210-216
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments (스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템)

  • Lee, Dongwoo;Kim, Ungsoo;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • There are many and various devices like sensors, displays, smart phone, etc. in smart environment. And contents can be provided by using these devices. Vast amounts of contents are provided to users, but in most environments, there are no regard for user or some simple elements like location and time are regarded. So there's a limit to provide meaningful contents to users. In this paper, I suggest the contents recommendation system that can recommend contents to users by reasoning context of users, devices and contents. The contents recommendation system suggested in this paper recommend the contents by calculating the user preferences using the situation reasoned with the contextual data acquired from various devices and the user profile received from the user directly. To organize this process, the method on how to model ontology with domain knowledge and how to design and develop the contents recommendation system are discussed in this paper. And an application of the contents recommendation system in Centum City, Busan is introduced. Then, the evaluation methods how the contents recommendation system is evaluated are explained. The evaluation result shows that the mean absolute error is 0.8730, which shows the excellent performance of the proposed contents recommendation system.

Validation of spatial rainfall measurement of an electromagnetic wave rain gauge (전파강수계의 강우 공간분포 측정 성능 검증)

  • Lee, Jung Duk;Kim, Won;Lee, Chanjoo;Lim, Sanghun;Kim, Donggu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.232-232
    • /
    • 2021
  • 수재해 저감과 예방을 위해서는 공간적 변동성을 반영한 정확한 면적 강우량의 측정은 필수적이다. 이러한 요구에 부응하기 위해 24 GHz 이중편파 전자파를 기반으로 소규모 공간 범위에 대해 저고도의 지상 강우를 30 m의 거리해상도로 관측할 수 있는 전파강수계가 개발되었다. 전파강수계는 시제품이 개발된 이래로 한국건설기술연구원 연천센터와 국내 여러 현장과 인도네시아 등에서 시험을 실시하였다. 임상훈 등(2020)은 전파강수계의 반사도와 비차등위상차를 이용한 강우 추정식을 개발하여 연천 및 거제 관측 자료에 적용한 바 있다. 본 논문에서는 연천센터에 분산 배치한 우량계 자료를 이용하여 전파강수계의 강우 공간분포 측정 성능을 평가하였다. 공간우량계는 15대 중 음영구역 바깥에서 정상 작동한 7개의 0.5mm급 우량계 자료와 핏게이지에 있는 0.2mm급 우량계 2대가 비교에 사용되었다. 전파강수계 강우강도는 비교 위치에 해당하는 점 주변의 레이 방향 5개(37.5 m에 해당) 및 방위각 방향 5개 게이트 등 총 25개의 복셀에서 산출된 강우 정보를 평균하여 비교하였다. 정확도는 지상우량계를 참값으로 보고 MAE(Mean absolute error)로 평가하였다. 그 결과 평균 4.2%의 오차를 보였으며, 우량계의 오차를 ±5%로 가정할 경우 3.3~7.9%로 나타났다. 전파강수계의 누적 강우량 값은 강우계에 비해 작은데, 이는 지속적인 관측을 통해 강우 산정의 정확도를 개선하는 것이 필요함을 의미한다.

  • PDF

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan;Danial Fakhri;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Khaled Mohamed Elhadi;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

Methodology for Variable Optimization in Injection Molding Process (사출 성형 공정에서의 변수 최적화 방법론)

  • Jung, Young Jin;Kang, Tae Ho;Park, Jeong In;Cho, Joong Yeon;Hong, Ji Soo;Kang, Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

Optimized inverse distance weighted interpolation algorithm for γ radiation field reconstruction

  • Biao Zhang;Jinjia Cao;Shuang Lin;Xiaomeng Li;Yulong Zhang;Xiaochang Zheng;Wei Chen;Yingming Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.160-166
    • /
    • 2024
  • The inversion of radiation field distribution is of great significance in the decommissioning sites of nuclear facilities. However, the radiation fields often contain multiple mixtures of radionuclides, making the inversion extremely difficult and posing a huge challenge. Many radiation field reconstruction methods, such as Kriging algorithm and neural network, can not solve this problem perfectly. To address this issue, this paper proposes an optimized inverse distance weighted (IDW) interpolation algorithm for reconstructing the gamma radiation field. The algorithm corrects the difference between the experimental and simulated scenarios, and the data is preprocessed with normalization to improve accuracy. The experiment involves setting up gamma radiation fields of three Co-60 radioactive sources and verifying them by using the optimized IDW algorithm. The results show that the mean absolute percentage error (MAPE) of the reconstruction result obtained by using the optimized IDW algorithm is 16.0%, which is significantly better than the results obtained by using the Kriging method. Importantly, the optimized IDW algorithm is suitable for radiation scenarios with multiple radioactive sources, providing an effective method for obtaining radiation field distribution in nuclear facility decommissioning engineering.