• Title/Summary/Keyword: mean absolute error

Search Result 556, Processing Time 0.027 seconds

Forecasting of Passenger Numbers, Freight Volumes and Optimal Tonnage of Passenger Ship in Mokpo Port (목포항 여객수 및 적정 선복량 추정에 관한 연구)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • The aim of this paper is to forecast passenger numbers and freight volumes in 2005 and it is proposed optimal tonnage of passenger ship. The forecasting of passenger numbers and freight volumes is important problem in order to determine optimal tonnage of passenger ship, port plan and development. In this paper, the forecasting of passenger numbers and freight volumes are performed by the method of neural network using back-propagation learning algorithm. And this paper compares the forecasting performance of neural networks with moving average method and exponential smooth method As the result of analysis. The forecasting of passenger numbers and freight volumes is that the neural networks performed better than moving average method and exponential smoothing method on the basis of MSE(mean square error) and MAE(mean absolute error).

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Solar radiation forecasting by time series models (시계열 모형을 활용한 일사량 예측 연구)

  • Suh, Yu Min;Son, Heung-goo;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.785-799
    • /
    • 2018
  • With the development of renewable energy sector, the importance of solar energy is continuously increasing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH). We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Comparative analysis of wavelet transform and machine learning approaches for noise reduction in water level data (웨이블릿 변환과 기계 학습 접근법을 이용한 수위 데이터의 노이즈 제거 비교 분석)

  • Hwang, Yukwan;Lim, Kyoung Jae;Kim, Jonggun;Shin, Minhwan;Park, Youn Shik;Shin, Yongchul;Ji, Bongjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.209-223
    • /
    • 2024
  • In the context of the fourth industrial revolution, data-driven decision-making has increasingly become pivotal. However, the integrity of data analysis is compromised if data quality is not adequately ensured, potentially leading to biased interpretations. This is particularly critical for water level data, essential for water resource management, which often encounters quality issues such as missing values, spikes, and noise. This study addresses the challenge of noise-induced data quality deterioration, which complicates trend analysis and may produce anomalous outliers. To mitigate this issue, we propose a noise removal strategy employing Wavelet Transform, a technique renowned for its efficacy in signal processing and noise elimination. The advantage of Wavelet Transform lies in its operational efficiency - it reduces both time and costs as it obviates the need for acquiring the true values of collected data. This study conducted a comparative performance evaluation between our Wavelet Transform-based approach and the Denoising Autoencoder, a prominent machine learning method for noise reduction.. The findings demonstrate that the Coiflets wavelet function outperforms the Denoising Autoencoder across various metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE). The superiority of the Coiflets function suggests that selecting an appropriate wavelet function tailored to the specific application environment can effectively address data quality issues caused by noise. This study underscores the potential of Wavelet Transform as a robust tool for enhancing the quality of water level data, thereby contributing to the reliability of water resource management decisions.

Least mean absolute third (LMAT) adaptive algorithm:part II. performance evaluation of the algorithm (최소평균절대값삼승 (LMAT) 적응 알고리즘: Part II. 알고리즘의 성능 평가)

  • 김상덕;김성수;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2310-2316
    • /
    • 1997
  • This paper presents a comparative performance analysis of the stochastic gradient adaptive algorithm based on the least mean absolute third (LMAT) error criterion with other widely-used competing adaptive algorithms. Under the assumption that the signals involved are zero-mean, wide-sense stationary and Gaussian, approximate expressions that characterize the steady-state mean-squared estimation error of the algorithm is dervied. The validity of our derivation is then confirement by computer simulations. The convergence speed is compared under the condition that the LMAT and other competing algorithms converge to the same value for the mean-squared estimation error in the stead-state, and superior convergence property of the LMAT algorithm is observed. In particular, it is shown that the LMAT algorithm converges faster than other algorithms even through the eignevalue spread ratio of the input signal and measurement noise power change.

  • PDF

Prediction of Blast Vibration in Quarry Using Machine Learning Models (머신러닝 모델을 이용한 석산 개발 발파진동 예측)

  • Jung, Dahee;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2021
  • In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and particle swarm optimization (PSO)-SVR algorithms were developed and compared with each other to predict the PPV. Mt. Yogmang located in Changwon-si, Gyeongsangnam-do was selected as a study area, and 1048 blasting data were acquired to train the machine learning models. The blasting data consisted of hole length, burden, spacing, maximum charge per delay, powder factor, number of holes, ratio of emulsion, monitoring distance and PPV. To evaluate the performance of the trained models, the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were used. The PSO-SVR model showed superior performance with MAE, MSE and RMSE of 0.0348, 0.0021 and 0.0458, respectively. Finally, a method was proposed to predict the degree of influence on the surrounding environment using the developed machine learning models.

Comparative Analysis of Flood Frequncy by Moment and L-moment in Weibull-3 distribution (Weibull-3 분포모형의 모멘트법 및 L-모멘트법에 의한 홍수빈도비교분석)

  • 이순혁;맹승진;송기헌;류경식;지호근
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.331-337
    • /
    • 1998
  • This study was carried out to derive optimal design floods by Weibull-3 distribution with the annual maximum series at seven watersheds along Man, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was acknowledged by the tests of Independence, Homogeneity, detection of Outliers. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in Weibull-3 distribution were compared by the rotative mean error and relative absolute error. It has shown that design floods derived by the method of L-moments using Weibull plotting position formula in Weibull-3 distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.

  • PDF

A Two-Stage Fast Block Matching Algorithm Using Mean Absolute Error of Neighbor Search Point (이웃 탐색점에서의 평균 절대치 오차를 이용한 2단계 고속 블록 정합 알고리듬)

  • Cheong, Won-Sik;Lee, Bub-Ki;Kwon, Seong-Geun;Han, Chan-Ho;Shin, Yong-Dal;Sohng, Kyu-Ik;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.41-56
    • /
    • 2000
  • In this paper, we propose a two-stage fast block matching algorithm using the mean absolute error (MAE) of neighbor search point that can reduce the computational complexity to estimate motion vector while the motion estimation error performance is nearly the same as full search algorithm (FSA) In the proposed method, the lower bound of MAE 6at current search point IS calculated using the MAE of neighbor search point And we reduce the computational complexity by performing the block matching process only at the search point that has to be block matched using the lower bound of MAE The proposed algorithm is composed of two stages The experimental results show that the proposed method drastically reduces the computational complexity while the motion compensated error performance is nearly kept same as that of FSA.

  • PDF

A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process (정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.