• Title/Summary/Keyword: mcnp

Search Result 368, Processing Time 0.025 seconds

Monte Carlo Studies on Mammography System

  • Ho, Dong-Su;Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Kim, Song-Hyun;Kim, Do-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.485-488
    • /
    • 2002
  • In order to understand and quantitatively analyze the physical phenomena and behavior of each component of mammography system during the breast imaging, we simulated mammography imaging using Monte Carlo simulation codes. MCNP4B code was used for our simulation purpose, and we investigated the effect of target material, anode angle, filtration, peak voltage and exposure on the image quality of mammograms. From the simulation results we expect that optimized operation condition of mammography system can be found.

  • PDF

A Design on neutron absorber and moderator for the content measurement of Asphalt (아스팔트 함량 측정을 위한 중성자 흡수체 및 감속재 설계)

  • Kim Ki-Joon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In Korea, under the influence of the jurisdiction, usage of radioisotopes are limited. The limitation is $100[{\mu}Ci]$ or less. Therefore, in this study, basic data were designed, and the following data are needed in order to improve content measuring instrument which is suitable for radioisotopes limitation. Owing to the source and detector's properties, measuring instrument was designed geometrically, neutron and photon's particle transportation was analysed by using the MCNP code which is in Monte Carlo Method, also the location of source and detectors, geometrical structure of neutron absorber and moderator was designed.

  • PDF

Benchmark Calculations of Lattice Codes for the Doppler Coefficient of MOX Fuel

  • Shin, Ho-Cheol;Bae, Sung-Man;Kim, Yong-Bae;Lee, Sang-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.46-51
    • /
    • 1996
  • In this study we calculate the infite multiplication factors ($k_{\infty}$) and the Doppler temperature coefficients (DTC) of two mixed-oxide (MOX) fuel rods with different plutonium contents by using PHOENIX-P, HELIOS and CASMO-3 codes. The results were compared against the reference values obtained by MCNP-3A continuous-energy Monte Carlo code. The purpose of this study is to benchmark the accuracy of these lattice codes. The PHOENIX-P's Doppler coefficients calculated were in good agreement with the MCNP results within the Monte-Carlo uncertainty band which is in the order of $\pm$ 10% for the Doppler coefficients..

  • PDF

Neutron diagnostics using nickel foil activation analysis in the KSTAR

  • Chae, San;Lee, Jae-Yong;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3012-3017
    • /
    • 2021
  • The spatial distribution and the energy spectrum of the neutron yield were investigated with the neutron activation analysis and MCNP simulation was carried out to verify the analysis results and to extend the results to a 3D mapping of the neutron yield distribution in the KSTAR. High purity Ni specimen was selected in the neutron activation analysis. Total neutron yields turned out to be 3.76 × 1012 n/s - 7.56 × 1012 n/s at the outer vessel of the KSTAR, two orders of magnitude lower than those at the inner vessel of the KSTAR, which demonstrates the attenuation of neutron yield while passing through the different structural materials of the reactor. Based on the fully expanded 3D simulation results, 2D cross-sectional distributions of the neutron yield on XY and ZX planes of KSTAR were examined. The results reveal that the neutron yield has its maximum concentration near the center of blanket and decreases with increasing proximity to the vacuum vessel wall.

Evaluation of Breast Dose by Breast Pressure Thickness of Breast Prosthesis Insertion (보형물 삽입 유방의 압박 두께에 따른 유방 선량 평가)

  • Lee, Hyeon-Yong;Kim, Ji-Soo
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.469-473
    • /
    • 2020
  • Breast cancer is growing rapidly year by year and has the highest incidence since 2001. As a result, the interest in mammography for early detection of breast cancer is increasing. However, mammography is accompanied by radiation exposure and therefore it is necessary to reduce exposure dose through appropriate test conditions. The significance of this study is that breast dose studies, which were limited to ordinary women, were applied to breast implant patient. Using MCNP simulation, the phantom with prosthesis inserted was developed to compare dose by tube voltage by pressure thickness. In addition phantom without prostheses has higher dose than phantom with prostheses. If these results were used as basic data, it would be possible to recommend test condition guideline only for breast implant patients.

Study on the Application of Soft Magnetic Material for Effective Neutron Shielding (효과적인 중성자 차폐를 위한 경량 연자성 물질 활용방안 연구)

  • Yeongchan Kim;Changwoo Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.93-100
    • /
    • 2023
  • This study analyzes the neutron shielding performance of Soft Magnetic Material and proposes a military application. In general, the military protection facility has been constructed with thick concrete, so Soft Magnetic Material, consisting of boron, was used with concrete in this study. To do so, Monte-Carlo N-Particle (MCNP) was applied to simulate the Watt-fission neutron spectrum of 235U and 239Pu. As a result, a configuration of polyethylene and Soft Magnetic Material is evaluated about four times better than borated polyethylene concerning the atomic weight of boron inside each shielding material. Also, when a nuclear weapon explosion is simulated in MCNP, 1 mm of Soft Magnetic Material with 20 cm of concrete shows about 55% more additional neutron shielding performance compared to when Soft Magnetic Material is not used. In this work, the neutron shielding performance of Soft Magnetic Material could be identified and Soft Magnetic Material would be useful for neutron shielding if applicable to concrete structure.

Design of proton-beam degrader for high-purity 89Zr production

  • Hyunjin Lee;Sangbong Lee;Daeseong Choi;Gyoseong Jeong;Hee Seo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2683-2689
    • /
    • 2024
  • This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.