• Title/Summary/Keyword: maximum throughput rate

Search Result 107, Processing Time 0.029 seconds

Development of Capacity Analysis Procedure for Freeway Facility System (고속도로 최대통과교통량 산정 및 서비스수준 평가 기법 개발)

  • Lee, Seung-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.129-148
    • /
    • 2006
  • The objective of this thesis is to develop a capacity analysis and to develop a methodology to evaluate Level of Service over the entire freeway sections by single MOE (Measure of Effectiveness) This study set forth from a following viewpoint. to analyze entire freeway sections as freeway facility system, it is important to identify the exact point where congestion would occur and the extent of the congestion. Therefore, in this thesis, congestion mechanism on freeways was figured out and congestion analysis methodology was developed. Thereby maximum possible throughput rate and maximum throughput rate in bottleneck sections were calculated and a congestion analysis was carried out. The difference between the new method and existing Procedures is that maximum possible throughput rate and maximum throughput rate. that can be considered as capacities of un-congested and congested flow in the bottleneck section, are variable capacities dependent on demand flow.

Development of Analysis Model and Improvement of Evaluation Method of LOS for Freeway Merging Areas (고속도로 합류부 분석모형 개발 및 서비스수준 평가 기법 개선 연구)

  • Lee, Seung-Jun;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.115-128
    • /
    • 2006
  • The analytic methodology of a merging area in KHCM(2004) supposes that congestion nay occur when traffic demand is more than capacity However, in many cases, congestion on merging area occurs when summation of traffic demand of main line and ramp is less than capacity, and in present methodology analysis of how main line and ramp flow effect on congestion occurrence is difficult. In this study, the model that is able to estimate traffic flow condition on merging area in accordance with the combination of main line and ramp demand flow is developed. Main characteristic of the model is estimation of maximum possible throughput rate and maximum throughput rate according to the combination of main line and ramp demand flow. Through the estimation of maximum possible throughput rate and maximum throughput rate. it was Possible to predict whether congestion would occur or not and how much maximum throughput rate and congestion would be on merging area. On one hand, in present LOS evaluation methodology on merging area, congestion state is determined as un-congested flow if demand flow is less than capacity. Therefore, to establish more reasonable In evaluation method, new criterion of LOS evaluation on merging area was searched based on the model of this study.

Throughput Improvement of an AMQAM Scheme by using New Switching Thresholds over Nakagami-m Fading Channels

  • Lee, Youngkou;Park, Sungsoo;Insoo Koo;Kim, Seung-Geun;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1440-1443
    • /
    • 2002
  • In this paper, we investigate the throughput improvement of an adaptive M-ary quadrature modulation (AMQAM) scheme by using new switching thresh-olds over slow frequency nonselective Nakagami-m fading channels. The new switching thresholds are obtained by using the approximated BER expressions with complimentary error functions for each modulation scheme given in AWGN channels. By using the new switching thresholds, we can improve the maximum system throughput. For example, we get the maximum throughput improvement about 0.32 when tile target BER is 10$\^$-3/ and the fading figure m = 3.

  • PDF

Sum-Rate Capacity with Fairness in Correlated MIMO Broadcast Channels

  • Lee, Seung-Hwan;Kim, Jin-Up
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.124-129
    • /
    • 2009
  • Although the maximum sum-rate capacity of multiple-input multiple output(MIMO) broadcast channels(BCs) can be achieved by dirty-paper coding(DPC), the results were obtained without fairness considerations in uncorrelated MIMO channels. In this paper, we propose new multiuser scheduling algorithms, which find a best user set for approaching the maximum sum-rate capacity while maintaining fairness among users. We analyze the performance of the proposed algorithms using zero-forcing dirty paper coding(ZF-DPC) in the correlated MIMO BCs for throughput and delay fairness, respectively. Numerical results demonstrate that a large time window can reduce the average throughput difference between users, but it increases head-of-line(HOL) delay jitters in the case of delay fairness.

Analysis of V2V Broadcast Performance Limit for WAVE Communication Systems Using Two-Ray Path Loss Model

  • Song, Yoo-Seung;Choi, Hyun-Kyun
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • The advent of wireless access in vehicular environments (WAVE) technology has improved the intelligence of transportation systems and enabled generic traffic problems to be solved automatically. Based on the IEEE 802.11p standard for vehicle-to-anything (V2X) communications, WAVE provides wireless links with latencies less than 100 ms to vehicles operating at speeds up to 200 km/h. To date, most research has been based on field test results. In contrast, this paper presents a numerical analysis of the V2X broadcast throughput limit using a path loss model. First, the maximum throughput and minimum delay limit were obtained from the MAC frame format of IEEE 802.11p. Second, the packet error probability was derived for additive white Gaussian noise and fading channel conditions. Finally, the maximum throughput limit of the system was derived from the packet error rate using a two-ray path loss model for a typical highway topology. The throughput was analyzed for each data rate, which allowed the performance at the different data rates to be compared. The analysis method can be easily applied to different topologies by substituting an appropriate target path loss model.

The Design and Implementation of Network Measurement System for Mobile Platforms (모바일 플랫폼을 위한 네트워크 환경 측정 시스템 설계 및 구현)

  • Kim, Kanghee;Yeo, Jinjoo;Kim, JinHyuk;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.35-46
    • /
    • 2013
  • As a rapid increase of mobile network usage, many studies on solution for network traffic's demand problem have been done. Especially network environment measurement area provides basis for solving network traffic's demand problem by finding causes of problems through accurate network analysis. However, as increase of demand for smartphone, we should consider effects of mobile platform's property measuring mobile network. In this paper, we design a network traffic measurement system considering mobile platform. Through the information from packets, this system calculates packet transmission delay and throughput. We minimize computation cost required for a mobile device that is a client in this system. When fully using network resources, we found that Wi-Fi has shorter transmission delay, higher maximum throughput and lower loss rate than 3G, Android has shorter transmission delay and higher maximum throughput than iOS, and UDP has longer transmission delay and higher maximum throughput through this system.

Network Coding-based Maximum Lifetime Algorithm for Sliding Window in WSNs

  • Sun, Baolin;Gui, Chao;Song, Ying;Chen, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1298-1310
    • /
    • 2019
  • Network coding (NC) is a promising technology that can improve available bandwidth and packet throughput in wireless sensor networks (WSNs). Sliding window is an improved technology of NC, which is a supplement of TCP/IP technology and can improve data throughput and network lifetime on WSNs. This paper proposes a network coding-based maximum lifetime algorithm for sliding window in WSNs (NC-MLSW) which improves the throughput and network lifetime in WSN. The packets on the source node are sent on the WSNs. The intermediate node encodes the received original packet and forwards the newly encoded packet to the next node. Finally, the destination node decodes the received encoded data packet and recovers the original packet. The performance of the NC-MLSW algorithm is studied using NS2 simulation software and the network packet throughput, network lifetime and data packet loss rate were evaluated. The simulations experiment results show that the NC-MLSW algorithm can obviously improve the network packet throughput and network lifetime.

DCF Throughput Analysis of the MAC Layer in the IEEE 802.11 Wireless LAN (IEEE 802.11a 무선 LAN의 MAC 계층DCF 처리율 분석)

  • Jung, Jin-Wook;Ha, Eun-Sil;Lee, Ha-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.509-515
    • /
    • 2005
  • This paper explores the throughput of DCF protocol with both the traffic intensity and MSDU size at the MAC layer in the 802.11a wireless LAN. By exploring the throughput of DCF protocol with the data rate of 6Mbps, 12 Mbps, 24 Mbps and 54 Mbps, we find the fact that the less the data rate be, the higher the throughput be. We also find, from the throughput calculation by means of traffic intensity and MSDU size, that the longer the MSDU size is, the higher the throughput is. We also found the traffic intensity that the throughput is at the maximum point with the fixed MSDU size.

  • PDF

Intra-Session Network Coding for Improving Throughput in Multirate Multihop Wireless Networks (다중 레이트 멀티 홉 무선 네트워크 환경의 처리율 향상을 위한 인트라세션 네트워크 코딩)

  • Park, Mu-Seong;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.21-26
    • /
    • 2012
  • Intra-session network coding has been proposed to improve throughput by simplifying scheduling of multi-hop wireless network and efficiency of packet transmission. Multi-rate transmission has been used in multihop wireless networks. An opportunistic routing with multirate shows throughput improvement compared with single rate. In this paper, we propose a method of throughput improvement in multi-hop wireless network by using multi-rate and intra-session network coding. We suggest a method to select an local optimal transmission rate at each node. The maximum throughput is evaluated by using linear programming (LP). To solve the LP, we use MATLAB and lp_solve IDE program. The performance evaluation results show that end-to-end throughput is improved by using multirate and intra-session network coding can achieve better throughput than opportunistic routing.

Circuit-Switched “Network Capacity” under QoS Constraints

  • Wieselthier, Jeffrey E.;Nguyen, Gam D.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.230-245
    • /
    • 2002
  • Usually the network-throughput maximization problem for constant-bit-rate (CBR) circuit-switched traffic is posed for a fixed offered load profile. Then choices of routes and of admission control policies are sought to achieve maximum throughput (usually under QoS constraints). However, similarly to the notion of channel “capacity,” it is also of interest to determine the “network capacity;” i.e., for a given network we would like to know the maximum throughput it can deliver (again subject to specified QoS constraints) if the appropriate traffic load is supplied. Thus, in addition to determining routes and admission controls, we would like to specify the vector of offered loads between each source/destination pair that “achieves capacity.” Since the combined problem of choosing all three parameters (i.e., offered load, admission control, and routing) is too complex to address, we consider here only the optimal determination of offered load for given routing and admission control policies. We provide an off-line algorithm, which is based on Lagrangian techniques that perform robustly in this rigorously formulated nonlinear optimization problem with nonlinear constraints. We demonstrate that significant improvement is obtained, as compared with simple uniform loading schemes, and that fairness mechanisms can be incorporated with little loss in overall throughput.