• Title/Summary/Keyword: maximum temperature

Search Result 7,858, Processing Time 0.028 seconds

An Experimental Study on the Shortest optimum time for Body Temperature measurement (체온측정에 필요한 최단적정시간규명을 위한 실험적 연구)

  • 홍여신;이선옥
    • Journal of Korean Academy of Nursing
    • /
    • v.5 no.2
    • /
    • pp.38-50
    • /
    • 1975
  • This study was conducted to find the shortest optimum time for taking oral temperature and axillary temperature, which does not affect reliability of body temperature. For this purpose, first, the time at which all the samples are reaching maximum temperature is identified Second, the mean maximum temperature is compared with the mean temperature of each consecutive measurement by T-test to find the time at which no significant changes in temperature occurs along time sequence. Third, optimum temperatures are set at points of -0.2℉, -0.4℉, -0.6℉, -0.8℉, -1.0℉, -1.2℉, -1.4℉, from maximum temperature. A point of time at which 90% of samples reach at optimum temperature is identified and defined as optimum time. The study sample, a total of 164 cases were divided into two groups according to their measured body temperature. The group with body temperature below 37 $^{\circ}C$(A group) and above 37$^{\circ}$1'C (B group) were compared on the time required to reach maximum temperature and optimum temperature. The results are as follow. 1. The time required for total sample to reach maximum temperature was 13 minutes in both groups by oral method, 15 minutes in A group and 13 minutes in B group by axillary method. Time required for 90 % of cases reach maximum temperature by oral method was 10 minutes in both group. By axillary method, 12 minutes in A group. (Ref: table 2) 2. Statistical analysis by means of T-test, the time which does not show a significant change by oral method were 12 minutes in A group and 11 minutes in B group, and by axillary method 14 minutes in A group and 11 minutes in B group. (Ref: table 5, 6.) 3. Where optimum temperature was defined as maximum temperature minus 0.2 ℉, optimum time was found 8 minutes in both groups by oral method, and 11 minutes in A group and 9 minutes in B group by axillary method 4. Where optimum temperature was defined as maximum temperature minus 0.4 ℉, optimum time was found 7 minutes in A group and 6 minutes in B group by oral method, and 9 minutes in A group and 7 minutes in B group by axillary method 5. Where optimum temperature was defined as maximum temperature minus 0.8 ℉, optimum time was found 6 minutes in A group and 6 minutes in B group by axillary method (Ref: table 7, 8, 9, 10) 6. The commonly practiced temperature taking time, 3 minutes in oral method and 5 minutes in axillary method can be accepted as pertinent when physiological variation of body temperature at the mean level of -1, 2 ℉ is accepted. 7. The difference in time required to resister maximum temperature was compared between the group with body temperature below 37$^{\circ}C$ and above 37$^{\circ}$1'C, and found no significant difference in oral mettled and 1 - 4 minute difference in axillary method with shorter time requirement in feverish group.

  • PDF

Stability of superconductor by integration formula

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.1-5
    • /
    • 2019
  • The superconductor stability theories are consistently described by the integral formula. If the defined stability function is a simple decreasing function, it becomes a cryogenic stability condition. If the stability function has a maximum value and a minimum value, and the maximum value is less than 0, then it is a cold-end recovery condition. If the maximum value is more than 0, it can be shown that the unstable equilibrium temperature, that is, the MPZ (minimum propagation zone) temperature distribution can exist. The MPZ region is divided into two regions according to the current ratio. At the low current ratio, the maximum dimensionless temperature is greater than 1, and at the relatively high current ratio, the maximum dimensionless temperature is less than 1. In order to predict the minimum quench energy, the dimensionless energy was obtained for the MPZ temperature distribution. In particular, it was shown that the dimensionless energy can be obtained even when the MPZ maximum temperature is 1 or more.

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

A Study on Scoring Resistance In Lubricated Sliding Contact (윤활 마찰면의 스코링 저항성에 관한 연구)

  • 김해원;홍재학;허준영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.358-366
    • /
    • 1990
  • As a basic study to clarify the scoring resistance in lubricated sliding contact, the temperature rise on frictional surface was analyzed by theoretical method and the effects of various factors on the temperature rise were examined. On the basic of the results obtained theoretically, the practical equations to calculate the maximum average temperature of the contact surface were proposed which are applicable to sliding contact. Then, the effects of sliding velocity and oil temperature on the seizure behavior, and the relation between seizure and temperature rise were investigated. The following conclusions are deduced : The maximum average temperature rise and the other bulk temperature. The former is affected by the size of heat supply region and the sliding velocity, the latter is affected by heat transfer coefficient. Without regard to the operating condition such as sliding velocity, oil temperature and operating time at each load-step, the maximum average temperature just before seizure is nearly constant except in the region of lower velocity. Consequently, the maximum average temperature of the contact surface in boundary lubrication is a useful criterion to predict the scoring of sliding contact.

COMPARATIVE EXPERIMENTAL STUDY ON MEASUREMENT OF ORAL TEMPERATURE WITH DIFFERENT KINDS OF CLINICAL THERMOMETERS -comparison of Oral Temperature and Oral Placement Time among Fahrenheit Glass Thermometer, Electric Thermometer, Yu II centigrade Glass Thermometer, and Kuk II centigrade Glass Thermometer- (각종 체온계의 구강체온측정에 관한 실험적 비교연구 -외제화씨 체온계, 전자체온계 및 국산 섭씨체온계에 의한 측정온도와 측정시간의 비교-)

  • 윤정숙
    • Journal of Korean Academy of Nursing
    • /
    • v.4 no.2
    • /
    • pp.93-106
    • /
    • 1974
  • The purposes of this study are to identify the necessity of utilization of electric thermometer, to determine the difference of clinical thermometers to reach maximum or optimum temperature, and to determine the length of time necessary for temperature taking, with Fahrenheit thermometer, electric thermometer, Yu Ⅱ centigrade thermometer, and Kuk ll centigrade thermometer. The first and second comparative Experiments were' conducted from August 25 through September 30, 1973. In the first experiment, Fahrenheit thermometer, which had been accurately teated two times, and electric thermometer have been utilized. These two kinds of thermometers were inserted simultaneously under the central area of the tongue and the mouth kept closed while thermometers were in place. All temperature readings were done at one minute interval until leaching-maximum temperature. These procedures were repeated one hundred times and the data were-analyzed statistically by means of the t-test. In the second experiment, Fahrenheit thermometer, which had been accurately tested two. times, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer have been utilized. These three kinds of thermometers were inserted simultaneously under the central area of the. tongue and the mouth kept closed while thermometer were in place. All temperature readings were done at one minute interval until reaching maximum temperature. These procedures were. repeated one hundred times and the data were analyzed statistically by means of the F-ratio Under the eight hypotheses designed for this study, the findings obtained are as follows: 1. There were no significant differences in the maximum temperature between Fahrenheit thermometer and electric thermometer. The mean maximum temperature for Fahrenheit thermometers was 37.06℃ and for electric thermometer was 37.09℃. 2. The placement time to reach maximum temperature taken by Fahrenheit thermometer was significantly shorter than that by electric thermometer. The mean placement time for Fahrenheit thermometers was 4.04 minutes, for electric thermometer was 5.52 minutes. In the case of Fahrenheit thermometers, 45 to 77 percent after 3 to 5 minutes, over 90 Percent after 7 minutes, and 100 percent after 10 minutes, had reached optimum temperature. When the electric thermometer was used, 23 to 54 percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 percent after 12 minutes, had reached optimum temperature. 5. There ware no significant differences in the maximum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer. The mean maximum temperature for Fahrenheit thermometers was 36.67℃, for Yu Ⅱ centigrade thermometer, was 33.73℃, and for Kuk Ⅱ centigrade thermometers was 37.76℃. 6. There were no significant differences in placement time to reach maximum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade Thermometer, and Kuk Ⅱ centigrade thermometer. The mean placement time (or Fahrenheit thermometers was 7.77 minutes, for Yu Ⅱ centigrade thermometers was 7.25 minutes, and Kuk Ⅱ centigrade thermometers was 7.25 minutes. In the case of Fahrenheit thermometers, 8 to 24 percent after 3 to 5 minutes, over 90 percent after 11 minutes, and 100 percent after 13 minutes, had reached maximum temperature. When the Yu Ⅱ centigrade thermometer was used, 10 to 27 percent after 3 to 5 minutes, over 90 percent after 11 minutes, an8 103 percent after 13 minutes, had reached maximum temperature. When the Kuk Ⅱ centigrade thermometer was used, 11 to 27 Percent after 3 to 5 minutes, over 90 percent after 11 minutes, and 100 percent after 12 minutes, had reached maximum temperature. 7. There were no significant differences in the optimum temperature(the maximum temperature minus 0.1℃) among fahrenheit thermometer, Yu Ⅱcentigrade thermometer, and Kuk Ⅱ centigrade thermometer. The mean optimum temperature for Fahrenheit thermometers was 36.60℃, for Yu Ⅱ centigrade thermometers was 36.69℃, and Kuk Ⅱ centigrade thermometers was 36.69℃. 8. There were no significant differences in placement time to reach optimum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer The mean placement time for Fahrenheit thermometers was 5.70 minutes, for Yu Ⅱ centigrade thermometers was 5.54 minutes, and for Kuk Ⅱ centigrade thermometers was 5.28 minutes. In the case of Fahrenheit thermometers, 21 to 49 percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 percent after 12 minutes, had reached optimum temperature. When the Yu Ⅱ centigrade thermometer was used, 23 to 51 percent after 3 to 5 minutes over 90 percent after 10 minutes, and 100 percent after 12 minutes, had reached optimum temperature. When the Kuk Ⅱ centigrade Thermometer was used, 23 to 57 Percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 Precent after 11 minutes, had reached optimum temperature.

  • PDF

Study on the Establishment of Threshold Criteria for Heat Health Watch Warning System in Korea; Part II: Improvement of Criteria (고온건강경보시스템 기준 설정에 관한 연구 ( II ) - 설정 기준 개선 -)

  • Jung, Woo-Sik;Park, Jong-Kil;Kim, Eun-Byul;Song, Jeong-Hui
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.781-796
    • /
    • 2009
  • The current standard level of Heat Health Watch Warning System consider both daily maximum temperature and daily maximum heat index(HI), but current standard could not consider daily maximum HI due to the difficulties in forecasting when we consider both daily maximum temperature and daily maximum HI and no considering HI because relative humidity could not observed for some regions. So, Newly established standard level of Heat Health Watch Warning System is based on daily maximum temperature exceeding $30^{\circ}C$ for two consecutive days or daily minimum temperature exceeding $25^{\circ}C$ and daily maximum temperature exceeding $30^{\circ}C$. These days are called "extreme heat days". On extreme heat days, the standard of extreme heat advisory is based on daily maximum temperature among exceeding $32.7^{\circ}C$ and not exceeding $34.8^{\circ}C$, and extreme heat warning is based on daily maximum temperature exceeding $34.8^{\circ}C$. ANOVA analysis was carried out using the data of Seoul Metropolitan City in 1994 to check the robustness of the new standard level of Heat Health Watch Warning System from this study, in particular for mortality variable. The results reveal that the new standard specifies excess mortality well, showing significance level of 0.05 in the difference of excess mortality for each phase.

Study on the Climate Change and the Urbanization Effect in Busan (부산의 도시기후 변화 경향과 도시화 효과에 관한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Shu, Young-Sang;Han, In-Seng;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • This study examines the climatological variability of urban area and the increase of temperature by urbanization using the observed data of Busan and Mokpo during the last 100 years (1910~2010). The results are as follows. First, the maximum temperature in Busan during the last 100 years has increased by $1.5^{\circ}C$ while average temperature and the minimum temperature have increased by $1.6^{\circ}C$ and $2^{\circ}C$. In Mokpo, the maximum temperature and average temperature have increased by $1^{\circ}C$ and the minimum temperature has increased by $0.8^{\circ}C$. The increase of urban temperature appeared to be higher in Busan than in Mokpo by $0.5^{\circ}C{\sim}1.2^{\circ}C$. Second, as for the change in temperature before and after urbanization, the maximum temperature, average temperature and the minimum temperature during last 50 years compared to the previous 50 years have increased about $1.5^{\circ}C$, $1.6^{\circ}C$ and $2.1^{\circ}C$, however, the predicted temperature after removing urbanization effect was estimated to be increased by $1^{\circ}C$. The proportion that urbanization takes on the overall increase of temperature appeared to be 33% at the maximum temperature, 37.5% at average temperature and 52.3% at the minimum temperature, thus the proportion of urbanization appeared to be maximized at the minimum temperature.

Iron Core Effects on Maximum Temperature Rise of Superconducting Transformer during Quench (퀜치시 초전도 변압기의 최대온도에 철심이 미치는 영향)

  • Nah, Wan-Soo;Joo, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • In this paper, the analytical results on the maximum temperature rise estimation, taking account of the magnetizing current, are presented. Magnetizing current effects are considered for the maximum temperature rise estimation during quenches. By introducing the first order model of the infinite solenoids, we calculate the magnetizing and leakage inductances of the coaxial-wound-superconducting transformers. As the permeability of the transformer core increases, so does the magnetizing inductance, while the leakage inductances and the magnetizing current of the transformer go down. These varying permeability effects on maximum temperature rise estimation is applied to the superconducting transformers, of which specifications have already been published. The calculated results showed sufficient margins to the thermal damage.

  • PDF

Structural Analysis of Synthetic Heat Transfer Fluid Boiler (열매체보일러의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3352-3357
    • /
    • 2012
  • In this paper, 3-dimensional designing program CATIA was used to design in order to investigate causes of a fire in a boiler using synthetic heat transfer fluid. And also structural analysis was conducted to the boiler by using 3-dimensional finite element code, ANSYS. Maximum temperature, maximum stress, and maximum strain were obtained at the normal condition and after fire.

The Estimation of Urbanization Effect in Global Warming over Korea using Daily Maximum and Minimum Temperatures (최고, 최저기온을 이용한 우리나라 기온변화에서의 도시화효과 분석)

  • Koo, Gyo-Sook;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.185-193
    • /
    • 2007
  • This study investigates urbanization effect in warming trend of surface air temperature over Korea. The data used in this study consist of the daily minimum and maximum temperatures during the period of 32 years(1968-1999) from 16 stations of KMA. To calculate magnitude and trend of urbanization effect, stations were classified into urban and rural stations using population statistics. Urban stations were defined as those with population densities greater than 1000 persons per kilometer squared in 1995. The others were defined as rural stations. The urban stations were also subdivided into two groups according to their population totals. For estimates of urban effect magnitude, temperature change was calculated by comparing 16-year mean values between 1968-83 and 1984-99. Then, the difference between each urban station and every rural station was calculated. During the analysis period of 32 years, maximum temperature increase is $1.22^{\circ}C$. In the total temperature increase, urban effect is estimated by 28.7%. For minimum temperature, it becomes larger by about 10% than that in maximum temperature. Therefore, urban effect in an increasing trend of minimum temperature is 38.9% in the change of $1.13^{\circ}C$.