• Title/Summary/Keyword: maximum spreading parameter

Search Result 5, Processing Time 0.02 seconds

Directional Asymmetry Parameter and Maximum Spreading Parameter of Random Waves Incident on a Planar Slope (경사면을 입사하는 불규칙파랑의 방향 비대칭 매개변수 및 최대 방향분포 매개변수)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Multidirectional random waves that obliquely approach the shore were found to become directionally asymmetric due to refraction. The directional asymmetry was expressed in terms of the asymmetry parameter which is related to the maximum spreading parameter ($s_{max}$). In this study, we calculate variation of both the asymmetry and maximum spreading parameters at different water depths for various cases of incident wave angles and maximum spreading parameters in deep water. These values are different from Goda and Suzuki (1975) who neglected directional asymmetry of waves. In calculating directional asymmetry and maximum spreading parameters, we use the JONSWAP spectrum (Hasselmann et al., 1973) and Lee et al.'s (2010) directional distribution function. The processes and results are nondimensionalized with significant wave height, peak frequency and peak wave length in deep water.

Characteristics on the Variation of Ocean Wave Statistics in the Chujeon Sea (주전해역의 파랑의 통계적 변동 특성)

  • 손병규;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.20-27
    • /
    • 2001
  • After using the filtering method, wave parameters are calculated by the spectral analysis and wave by wave analysis. Extreme environments and higher wave characteristics int he Chujeon Sea are analyzed using the observed wave data. Higher wave has been intensely emphasized as an important environmental force parameter in several recent research works. The aims of this study are to summarize the distribution of extreme environment for wind waves, and to find occurrence probability of higher wave in Chujeon Sea. Ocean wave statistics varying with sea state are found to respond linearly to the spectral peakedness parameter Qp, mean run-length and Ursell number. Although the spreading of the field results is large, it may be concluded that the tendency of wave group formation depends on the spectral peakedness parameter Qp. Extreme wave is estimated to apply various model distribution functions by using the monthly maximum significant wave parameters which can be used to the design and analysis of coastal structures.

  • PDF

Calculation of the Peak-delay Force Reduction Parameter of Multi-Directional Random Waves Acting on a Long Caisson Breakwater (장대 케이슨 방파제에 작용하는 다방향 불규칙파랑의 파력감소계수 산정)

  • Jung, Jae-Sang;Kim, Bum-Hyung;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.843-850
    • /
    • 2010
  • By employing multi-directional random waves, a parameter controlling the force acting on a long caisson breakwater is investigated in detail. Both JONSWAP (Joint North Sea Wave Project) and asymmetric directional spectra are adopted for frequency and directional spectra. It is found that the parameter decreases as the length of caisson and the angle of main direction of incident waves increase. Furthermore, the parameter is much similar to that of regular waves as the maximum spreading parameter $s_{max}$ increases. The parameter, however, decreases as asymmetry parameter ${\mu}$ increases when the main direction of incident waves is oblique to the breakwater.

Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater (다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석)

  • Jung, Jae-Sang;Kang, Kyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In this study, transmission and reflection of multi-directional random waves propagating over impermeable submerged breakwaters are calculated by using eigenfunction expansion method. A series of mutiderectional random waves is generated by using the Bretschneider-Mitsuyasu frequency and Mitsuyasu type directional spectrum. Strong reflection is occurred at the Bragg reflection condition of the peak frequency. If the row of breakwaters is fixed at 3 and the relative height of breakwater is fixed at 0.6, more than 25% of incident wave energy is reflected to offshore. It is also found that the reflection of directionally spreading random waves increases as the maximum spreading parameter $s_{max}$ increases.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF