• 제목/요약/키워드: maximum sensitivity

검색결과 944건 처리시간 0.025초

ESTIMATION AND SENSITIVITY OF GOMPERTZ PARAMETERS WITH MORTALITY DECELERATION RATE

  • PITCHAIMANI M.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.311-320
    • /
    • 2005
  • Studies in the evolutionary biology of aging require good estimates of the age-dependent mortality rate coefficient (one of the Gompertz parameters). In this paper we introduce an alternative algorithm for estimating this parameter. And we discuss the sensitivity of the estimates to changes in the other model parameters.

산 경사면의 기울기 변화에 따른 바람장의 민감도에 관한 WRF 수치모의 연구 (A Numerical Simulation Study on the Sensitivity of WRF Model in the Wind Field to the Steepness of Mountain Slopes)

  • 한선호;이재규
    • 대기
    • /
    • 제17권4호
    • /
    • pp.349-364
    • /
    • 2007
  • The main purpose of this study is to examine the sensitivity of the WRF (Weather Research and Forecasting) in the wind field to the steepness of mountains in the case with a strong downslope wind occurred in the Yeongdong province. We conducted WRF simulations for February 13 2006. The initial and boundary data are from the NCEP/NCAR $1^{\circ}{\times}1^{\circ}$ GDAS. Arbitrary terrains of the mountains with a symmetric orography and an asymmetric one with steeper leeward slope, were introduced to examine the sensitivity of the shape of the mountains. The simulation with an asymmetric terrain results in stronger maximum surface wind by about $10ms^{-1}$ than with a symmetric terrain, especially in the narrow region from the peak to ~ 4 km away in the downstream. However, the maximum surface wind speed is weaker by $20ms^{-1}$ than with a symmetric terrain away from the narrow peak region. This indicates that the steeper slope leads to the intensification of downslope wind in the narrower region leeward. In addition, for the simulation with an asymmetric terrain, the strength of wave breaking is greater and the Lee wave is more dominant than for that with a symmetric terrain.

합산회로를 통하여 타축감도가 자체상쇄된 6빔 가속도센서의 제조 (Fabrication of six-beam accelerometer with self-eliminated off-axis sensitivity by summing circuit)

  • 심준환;김동권;이종현
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.33-39
    • /
    • 1998
  • A six-beam accelerometer with self-compensated off-axis sensitivity was fabricated onthe selectively diffused (111)-oriented n/n$^{+}$/n silicon substrates by a unique porous silicon micromachining technique, which has self-stip characteristics and highly seletive formation of porous silicon layer during anodic reaction. Also, the characteristics of the fabricated accelerometer were investigated. The sensitivity of the acceleormeter added up outputs of three bridges through a summing circuit was 0.68 mV/g and the nonlinearity was less than 2% of the full scale output. The measured first resonant frequency was 4.236 kHz. When the outputs of three bridges were compared to summing output of bridges obtained through summing circuit, the normal output for Z-axis acceleration exhibited the same value s summing outputs of three bridges without reduction of sensitivity and thus the sensitivity decrease due to additional beam was compensated. Although a maximum off-axis sensitivity in one bridge of the accelerometer showed 17% of normal sensitivity, the off axis sensitivity obtained from summing output of three bridges decreased to 1.0%. Therefore, the self-elimination of off-axis sensitivity can be simply realized by obtaining the output of the sensor through summing circuit.t.

  • PDF

Sensitivity Analysis of the Criticality Evaluation Concerning Pyroprocess

  • Gao, Fanxing;Ko, Won-Il;Park, Chang-Je;Lee, Ho-Hee
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2010년도 학술논문요약집
    • /
    • pp.271-272
    • /
    • 2010
  • Sensitivity analysis by TSUNAMI clarifies the complex effects of key nuclides on the criticality probability quantitatively. As discussed above, the $K_{eff}$ of $UO_2$ fuel reaches the maximum value with 42w% concentration of intrusion water. The concentration of hydrogen affects the complexity of reaching criticality by its competition between the concentrations of $^{235}U$. Approximately if the weight percent of $H_2O$ in the mixture is less than 42%, the moderation effect of hydrogen surpasses its dilution effect on $^{235}U$. However, the importance of $^{235}U$ increases dramatically when the weight percent of water is bigger than 42%. In the sensitivity evaluation of $UO_2$ fuel employing TSUMAMI, there is a similar crosspoint of the sensitivity of $^{235}U$ and the sensitivity of $^1H$ where the criticality reaches summit. And the optimal water weight percent is determined to be 50%.

  • PDF

다중 목표물 추정을 위한 최대 우도 방법에 대한 연구 (A Study on Maximum Likelihood Method for Multi Target Estimation)

  • 이민수
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.165-170
    • /
    • 2013
  • 공간상에서 원하는 목표물의 도래 방향 추정은 수신 안테나에 입사하는 신호의 입사 방향을 찾는 것이다. 본 논문에서는 최대 우도 추정 방법을 이용하여 원하는 목표물의 도래 방향을 추정하였다. 도래 방향 추정방법은 최대 우도 방법에서 수신 신호 한계점 이상의 신호에 특이 값 분해를 적용하여 최대 우도 추정의 첨예도를 계산하여 원하는 목표물을 추정하였다. 모의실험을 통하여 본 연구에서 제안된 방법의 성능을 기존 방법과 비교분석하였다. 목표물 도래방향 추정에서 본 연구에서 제안한 방법이 고유치 전개를 하지 않기 때문에 처리시간 단축에서 효과적이고 원하는 목표물의 방향을 정확히 추정하였다. 본 연구에서 제안한 방법이 목표물 추정에서 기존 방법보다 우수함을 나타내었다.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

An Experimental Investigation on the Contamination Sensitivity of an Automotive Fuel Pump

  • Lee Jae-Cheon;Shin Hyun-Myng
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.51-55
    • /
    • 2005
  • This study addresses the contamination sensitivity test of a typical fuel pump for an automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of a fuel pump on specific contaminant particle sizes so that an optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of the fuel pump is measured under the experiments of various contaminants size ranges of ISO test dust up to $80\;{\mu}m$. The fundamental theory of contamination sensitivity is introduced and the contamination sensitivity coefficients are estimated using the experimental data. Maximum contamination sensitivity coefficient of $5\chi\;10^{-6}\;L/min{\cdot}Ea$ is found in the contaminant size range of $40\;{\mu}m\~50\;{\mu}m$. The magnified picture of the surface of vane disc reveals that the abrasive wear is the principal cause of discharge flow rate degradation. Hence, this study reveals that a high efficiency filter for contaminant particles especially in the size range of $30\;{\mu}m\~70\;{\mu}m$ especially should be used to maintain the service life of the fuel filter.

자동차 연료펌프의 오염민감도 실험 연구 (An Experimental Investigation on The Contamination Sensitivity of An Automotive Fuel Pump)

  • 이재천;장지현;신현명
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.102-108
    • /
    • 2004
  • This study addresses the contamination sensitivity test of a typical fuel pump for automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of fuel pump on specific contaminant particle sizes so that optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of fuel pump was measured under the experiments of various contaminants size ranges of ISO test dust up to 80${\mu}{\textrm}{m}$. The fundamental theory of contamination sensitivity was introduced and the contamination sensitivity coefficients were estimated using the experimental data. Maximum contamination sensitivity coefficient of $5{\times}10^{-6}$ L/minㆍEa was found on the contaminant size range of 40${\mu}{\textrm}{m}$∼50${\mu}{\textrm}{m}$. The magnified picture of the surface of vane disc revealed that the abrasive wear was the principal cause of discharge flow rate degradation. Hence, this study revealed that high efficiency filter on the contaminant particle size range of 30${\mu}{\textrm}{m}$∼70${\mu}{\textrm}{m}$ especially should be used to maintain the service lift of the fuel filter.

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.