• Title/Summary/Keyword: maximum resistance

Search Result 1,755, Processing Time 0.024 seconds

Change and Development of Proprioceptive Neuromuscular Facilitation (고유수용성신경근촉진법의 변화와 발전)

  • Bae, Sung-soo;Lee, Hyun-ok;Goo, Bong-oh;Kim, Sang-soo;Kim, Tae-yoon;Hwang, Seong-soo
    • PNF and Movement
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Objectives : The purpose of this study was conducted to find change and development of the proprioceptive neuromuscular facilitation(PNF). Methods: This is a literature study with books, seminar and book for the international courses. Results: Combination of isotonic has been started by Mr and Mrs Johnson after Miss Knott passed away. It is that the terms of maximum resistance changed into optimal or appropriate resistance. It is focus on activities. Maximum resistance focus not only activities but also irradiation have to fit with normal functions. PNF has enough for the motor control concepts and international classification of functioning(ICF)of WHO. Conclusions: PNF has changed and developed with giving resistance method. It is that changed from maximal resistance to optimal resistance. But it is smaller concept than maximum resistance. Even though PNF founded 60 years ago, it is enough for new concepts that is motor control and learning.

  • PDF

The Parameter Study on the Characteristics of Axial Force in Turnout with Continuous Welded Rail (분기부(分岐部) 장대(長大)레일화시의 축력거동특성(軸力擧動特性) 해석(解析))

  • Kim, Doo-Hwan;Ko, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • This paper is to study the characteristics of axial force behavior that operates to the part of turnout when it makes the turnout and the continuous welded rail unifying. The study is to model by using the 50kgN rail No. 15 turnout used in the domestic national railway and the UIC60 rail No. 18 turnout used in the rapid transit railway as the finite elements for analyzing the axial force behavior of the turnout by the continuous welded rail. It is to analyze the characteristics of behavior according to the change of creep resistance, ballast resistance and the change of parameter valuables of heel joint by the axial force simulation in making the continuous welded rail and then, it is to present the result. As the result of research on the parameter valuables through the analysis, it shows that the maximum axial force of turnout by the continuous welded rail are largely subordinated to the maximum resistance of heel joint and the fitting devices than the ballast resistance. Also it shows that the maximum axial force produced changes a lot according to the characteristics of creep resistance of the fitting part and the ballast resistance.

  • PDF

Criteria of Impact Resistance of Lightweight Wall by the Large Soft Body (건식 경량벽체의 연질 충격체에 의한 내충격성 판정기준에 관한 연구)

  • Kim, Ki Jun;Song, Jung Hyeon;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.102-103
    • /
    • 2014
  • Due to the nature of the existing load, the criteria of assessing the intensity of the lightweight wall's impact resistance has been though of as obscure. The current study, therefore, focuses on the standardized assessment of the impact resistance to the force of the large soft body applying to the lightweight wall. The gypsum board wall showed a low level of the maximum residual displacement. It is, however, required to be careful about the selection of the finishing process since the high level of the maximum displacement is likely to cause harm to finishing materials. Unlike the gypsum board, the ALC block wall displayed a considerable rigidity while showing almost no maximum residual displacement. Even with the low level of the maximum displacement due to the stiffness, the ALC block wall is still likely to be affected by the vibration derived from any impact on the surface, which demands a need for additional study. The future experimental study, accordingly, will focus on the impact of the vibration on finishing materials, consequently leading to the accurate prediction of the possibility of potential damage to the lightweight wall caused by the large soft body.

  • PDF

Effect of Wrist Resistance Training on Motor Control and Strength in Young Males

  • Kim, You-Sin;Kim, Dae-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.309-315
    • /
    • 2014
  • The aim of the present study was to investigate the effects of 6-week wrist resistance training on wrist torque control. Nineteen subjects were randomly assigned to either the wrist training group (n=9) or the control group (n=10). The training group performed wrist exercises for six directions (flexion, extension, pronation, supination, radial deviation, and ulnar deviation) while the control group did not. Testing for the isometric torque control error, one-repetition maximum (1-RM) strength, and isokinetic maximum torque (angular velocity of $60^{\circ}/s$ wrist movements) were conducted before and after six weeks of resistance training and after every two-week interval of training. The wrist training group showed significant decreases in isometric torque control error in all six directions after the 2-week resistance training, while the control group did not show significant increase or decrease. The training group showed significant increases in the maximum strength in all six directions assessed by 1-RM strength and isokinetic strength tests after the 4-week resistance training, while the control group did not show any statistically significant changes. This study shows that motor control ability significantly improves within the first two weeks of resistance training, while the wrist strength significantly improves within the first four weeks of resistance training in wrist training group compared to the control.

Effect of Depending on the Location of Applying Chest Expansion Resistance Exercise on Respiratory Muscles Strength in Stroke Patients (뇌졸중 환자에게 가슴우리 확장 저항 운동의 적용 위치가 호흡근력에 미치는 영향)

  • Lee, Ji-Won;Cho, Yong-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • PURPOSE: The purpose of this study was to compare the effect of depending on the location of applying chest expansion resistance exercise on the respiratory muscle strength stroke patients, and to suggest more effective interventions to improve respiratory function in stroke patients in clinical practice. METHODS: A total of 30 subjects were selected and divided into two groups, and chest cage extension resistance exercise was applied to the sternum and rib cage, respectively, and performed for 4 weeks, 3 times a week, for 20 minutes. In order to compare the general characteristics of the study subjects and the homogeneity of the group, the pre-experimental values were analyzed using the independent sample t-test. Paired-sample t-test was used for pre-post value comparison of maximum inspiratory pressure and maximum expiratory pressure in each group. Statistical significance was set to .05. RESULTS: Both the sternum application group and the rib cage application group showed a significant difference in the maximum inspiratory pressure according to the intervention. Also, there was a statistically significant difference in the maximum expiratory pressure in the sternum application group. CONCLUSION: As breathing exercise is important for stroke patients, based on the results of this study, if therapists perform sternal extension resistance exercise or rib extension resistance exercise according to the patient's condition and environment, it can help the breathing function of stroke patients.

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Variation Characteristics of Stiffness and Impact Resistance under Conastruction Height of Gypsum Board Wall (석고보드 벽체의 시공높이에 따른 수평하중저항성 및 내충격성 변동 특성)

  • Song, Jung Hyeon;Kim, Ki Jun;An, Hong Jin;Shin, Yun Ho;Ji, Suk Won;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.184-185
    • /
    • 2014
  • The purpose of this study is to experimentally evaluate the variation characteristics of stiffness and impact resistance under the construction height of gypsum board wall at the actual construction site. The method suggested in previous study was applied on the test method of horizontal load resistance and impact resistance. As a result of horizontal load resistance test, when the wall height is 2,400 mm, the maximum displacement is 13.6 mm and residual deformation is 0.5 mm, and when the wall height is 3,000 mm, the maximum displacement is 31.3 mm and the residual displacement is 6.8 mm. As a result of impact resistance test, the residual deformation of each specimen at 20 cm of fall height were 1.02 mm and 0.08 mm, respectively, the residual deformation at 40 cm of fall height were 1.58 mm and 0.35 mm, respectively, and the residual deformation at 60 cm of fall height were 2.23 mm and 2.48 mm, respectively.

  • PDF

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

Power Change According to the Angle of Solar Incidence (태양 입사각에 따른 전력 변화)

  • Mi-Yong Hwang;NguYen Vanhung;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.261-265
    • /
    • 2023
  • In this paper, we analyzed the transformation of the power following by the angle of incidence of the solar, the angle of photovoltaic module and artificial solar changed from 30° to 90° and synchronously changed the distance from 0.1 m to 0.5 m. Setting the distance between the artificial solar and the luminometer from 0.1 m to 0.5 m and set the angles to 90°, 60°, 45°, and 30°, the angle was 90° and when the distance was 0.1 m, the maximum Illuminance was 19,580 lux, the light could be obtained more. If the angle of incidence between the Artificial solar and the photovoltaic module was 90° and the variable resistance was 1,000 Ω at a distance of 0.4 m, the maximum power reached 0.82 W. Provided that the angle of incidence between the artificial solar and the photovoltaic module was 90° and the distance was 0.2 m since the variable resistance had the maximum power of 500 Ω, the maximum power was 0.78 W. At 1,000 Ω, the maximum power is 0.80 W so the maximum power at the variable resistance 1,000 Ω could obtain higher power than the variable resistance 500 Ω. The variable resistance was 1,000 Ω and the angle of incidence between the Artificial solar and the photovoltaic module was 90° at a distance of 0.4 m, and the maximum power reached 0.82 W. The angle was 60° at 0.3 m and 0.4 m the maximum power reached 0.10 W. The angle was 45° at 0.2 m maximum power reached 0.020 W, the angle was 30° at 0.4 m, and the maximum power reached 0.004 W. In four results about maximum power depending on the angle of incidence between the artificial solar and the photovoltaic module, the luminous efficiency and maximum power can be got the best at an angle of 90°.