• Title/Summary/Keyword: maximum rainfall

Search Result 668, Processing Time 0.021 seconds

Maximum Areal Rainfall of Korea in the 20th Century (20세기 우리나라 관측최대강수량의 특성)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.425-435
    • /
    • 2004
  • Mainly, observed maximum rainfall has been evaluated by point rainfall, but actually it should be considered by means of average areal rainfall. Average areal rainfall is an estimated value computed through DAD(rainfall Depth-Area-Duration) analysis. By using this value, an average and maximum areal rainfall according to area-duration relationship could be computed. In this study, we assume that the whole Korea region is hydrologically homogeneous, and then analyze using the storm-centered DAD(moving-area DAD) method for the past century data. From this analysis, we evaluate the yearly variation of observed maximum areal rainfall through area-duration relationship. And we also construct an IDF(rainfall Intensity-Duration-Frequency) curve by using the annual time series data which is composed of maximum areal rainfall. The characteristics of IDF and observed maximum areal rainfall is also evaluated.

Comparison of Annual Maximum Rainfall Series and Annual Maximum Independent Rainfall Event Series (연최대치 계열과 연최대치 독립 호우사상 계열의 비교)

  • Yoo, Chul-Sang;Park, Cheol-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.431-444
    • /
    • 2012
  • This study investigated the differences between annual maximum series and annual maximum independent rainfall event series with relatively short and long rainfall durations. Annual maximum independent rainfall events were selected by applying various IETDs and thresholds to the hourly rainfall data in Seoul for the duration from 1961 to 2010. Annual maximum independent rainfall event series decided were then compared with the conventional annual maximum series. Summarizing the results is as follows. First, the effect of IETD and threshold was not beyond the expected level. For example, as the IETD increases, the frequencies of independent rainfall events decreased similarly in their rate for both with short and long durations. However, as the threshold increases, the frequency of those with rather long durations decreased much higher. Second, The mean rainfall intensity of the independent rainfall events was found to remain constant regardless of their duration. This indicates that the annual maximum rainfall intensity could be found in a rainfall event with longer durations. Lastly, the difference between the annual maximum rainfall series and the annual maximum independent rainfall event series with rather short rainfall durations was found significantly large, which decreases with longer durations. This result indicates that the conventional data analysis method, especially for small basins with short concentration time, could lead an unrealistic design rainfall with little possibility of occurrence.

Probability Characteristics of Probable Rainfall and Recorded Maximum Rainfall in Korea. (한국주요지점에 대한 확률강우량과 관측최대강우량의 확률분석)

  • Jeong, Mahn;Lee, Jong-Kyu
    • Water for future
    • /
    • v.14 no.3
    • /
    • pp.47-54
    • /
    • 1981
  • The characteristics of point rainfall for three different durations in Seoul Pusan Taegu and Gwangju have been analysed by the probabilistic ainfall method and the M-year maximum rainfall method. The probabilities that the T-year probabilistic rainfall did not occur during the observation period, compared with the values obtained from the observed data. were smaller than the theoretical values. The averages of the probabilities that the M-year maximum-ten-minute rainfall did not occur in the consequent N-years were larger than the theoretical values, the M-year maximumone hour rainfall were smaller than the theoretical ones, and the M-year maximum daily rainfall nearly agreed with them, and while those of Japan were smaller than the theoretical values. It is recommended from the results that the recorded maximum value should be used as a design value rather than the probabilistic rainfall.

  • PDF

Analysis on the Characteristics about Representative Temporal-distribution of Rainfall in the Annual Maximum Independent Rainfall Events at Seoul using Beta Distribution (베타분포를 이용한 서울 지점 연 최대치 독립 호우사상의 대표 시간분포 특성 분석)

  • Jun, Chang Hyun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.361-372
    • /
    • 2013
  • This study used the beta distribution to analyze the independent annual maximum rainfall events from 1961 to 2010 and decided the representative rainfall event for Seoul. In detail, the annual maximum rainfall events were divided into two groups, the upper 50% and the lower 50%. For each group, a beta distribution was derived to pass the mean location of the rainfall peaks. Finally, the representative rainfall event was decided as the rainfall histogram of the arithmetic average of the two beta distributions derived. The representative rainfall event derived has a realistic shape very similar to those observed annual maximum rainfall events, especially with the higher rainfall peak compared to that of the Huff distribution. Comparison with other rainfall distribution models shows that the temporal distribution of the representative rainfall event derived in this study is most similar to the Keifer & Chu model.

Review of Parameter Estimation Procedure of Freund Bivariate Exponential Distribution (Freund 이변량 지수분포의 매개변수 추정과정 검토)

  • Park, Cheol-Soon;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.191-201
    • /
    • 2012
  • This study reviewed the parameter estimation procedure of the Freund bivariate exponential distribution for the decision of the annual maximum rainfall event. The method of moments was reviewed first, whose results were compared with those from the method of maximum likelihood. Both methods were applied to the hourly rainfall data of the Seoul rain gauge station measured from 1961 to 2010 to select the annual maximum rainfall events, which were also compared each other. The results derived are as follows. First, when applying the method of moments for the parameter estimation, it was found necessary to consider the correlation coefficient between the two variables as well as the mean and variance. Second, the method of maximum likelihood was better to reproduce the mean, but the method of moments was better to reproduce the annual variation of the variance. Third, The annual maximum rainfall events derived were very similar in both cases. Among differently selected annual maximum rainfall events, those with the higher rainfall amount were selected by the method of maximum likelihood, but those with the higher rainfall intensity by the method of moments.

Comparison of Chukwooki and Modern data Using Annual Maximum Rainfall Event Series (연최대 호우사상 계열을 이용한 측우기자료 및 현대자료의 비교)

  • Park, Minkyu;Yoo, Chulsang;Kim, Hyeon Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.137-147
    • /
    • 2010
  • In this study, Chukwooki and modern data were compared using annual maximum rainfall event series. Annual maximum series for specified rainfall duration in modern frequency analysis can not be constructed from Chukwooki data, so the concept of independent rainfall event is introduced to compare Chukwooki and modern data. Annual maximum rainfall event is determined by applying the bivariate exponential distribution and the parameters estimated annually are selected. The results using the annual parameter show that the hydrological meaning of the parameters is related to the variation of annual total rainfall amounts. For the whole independent rainfall events, the total rainfall and the rainfall intensity of Chukwooki data are greater than those of modern data, and rainfall duration of the two periods is similar. However modern annual maximum rainfall events show different characteristics that rainfall duration is much longer, rainfall intensity is similar and the total rainfall is greater than those of Chukwooki period. The increasing trend of rainfall duration and total rainfall of the modern annual rainfall events may be regarded as the one of components of the long-term cycle.

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

Derivation of Probable Rainfall Intensity Formula at Masan District (마산지방 확률강우강도식의 유도)

  • Kim, Ji-Hong;Bae, Deg-Hyo
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.

  • PDF

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Variation Characteristics of Annual Maximum Rainfall Series and Frequency-Based Rainfall in Korea (우리나라 연최대치 강우량 계열 및 확률강우량의 변화 특성)

  • Kim, Jae-Hvung
    • Journal of Wetlands Research
    • /
    • v.4 no.2
    • /
    • pp.43-56
    • /
    • 2002
  • About 12 rain gauge stations of Korea, annual maximum rainfall series of before and after 1980 whose durations are 1, 2, 3, 6, 12, 24, 48, 72 hours respectively were composed and statistical characteristics of those time series were calculated and probability rainfall were estimated by L-moment frequency analysis method and compared each other in order to investigate the recent quantitative rainfall variations. And also, distribution curves of each statistical variations for each duration were constructed by using Kigging method to look into spacial rainfall variation aspects. As a result, We could confirm recent rainfall increase in the South Korea. And spatial increase pattern of standard deviation and frequency rainfall appeared analogously each other. 1n the cases of comparatively short rainfall duration, we could see relatively low increase or decrease tendency in Chungchong Province, Cholla-bukdo, Cholla-namdo eastern part, Kyongsang-namdo western part area. While, variations happened great1y in seaside district of east coast, southwest seashore, Inchon area etc. In the cases of longer durations relatively low increase was showed in southern seashore such as Yeosoo area and as distance recedes from this area, showed gradually augmented tendency. The aspect of mean looks similar tendency of above except that the variation rate of almost seaside district are big in the case of shorter durations. In addition, rainfall increases of short durations which became the center of hydrologist and meteorologist are unconfirmed in this study.

  • PDF