• Title/Summary/Keyword: maximum element order

Search Result 436, Processing Time 0.023 seconds

Design and Ground Test of Propeller for 50 m-long Airship Propulsion (50 M급 비행선 추진용 프로펠러 설계 및 지상성능시험)

  • Kim,Hyeong-Jin;Lee,Chang-Ho;Jeon,Seong-Min;Im,Byeong-Jun;Lee,Jin-Geun;Yang,Su-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • Design analysis and grow1d test on propellers for 50 m-long airship propulsion were conducted. The design analysis code developed by adopting the vortex-blade-element theory was applied to the design of optimum propeller at the condition of maximum flight speed at sea level. In order to validate the performance of the propeller, ground test of the propeller was performed, and thrust and torque were measured for several different pitch angles at static condition. The power coefficients and thrust coefficients obtained by the test compared well with the analysis results.

Stuctural Characteristics on Drilling Center Column made of Epoxy-granite Material (드릴링 센타용 에폭시-그래나이트재 컬럼의 구조물 특성 연구)

  • 원시태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.158-165
    • /
    • 1995
  • A new fungible materal named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic chatateristics comparing with a conventional cast iron material. The dimensions of new colum structure are adjusted to keep the same stiffness (El value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up. one of which is for the measurement of natural mode and frequency using experimental modal analysis and the other one is for the measurement of vibration amplitude during idling operation of a machine fool. The comparison of maximum, accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measued on the bed motor base and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite materal exhibits a good anti-vibrational property even if it is used under the actual operational environments of machine eool as a practical structural element.

  • PDF

The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe (다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

A Study on the Functional Sleeve Pattern of Sports Climbing Wear (스포츠 클라이밍 웨어의 기능성 소매패턴 연구)

  • Im, Ga Bin;Park, Ju Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.585-598
    • /
    • 2017
  • Sports climbing requires more maximum body motion range than any other sport. This study examined what element affects the actions of sports climbers and suggest an ideal pattern archetype to maximize function based on motion. The theoretical background included abstracted elements influencing clothing design by researching the body type of sports climbers and the motion of sports climbing. Along with the characteristic of climbing wear, this study also conducted a comparative analysis of sleeve patterns for sports climbing wear and general sports jackets, abstracting comparative parts that influence sports climbing wear design. To develop the final research archetype, research was done on 107 sports climbers in their 20s-30s that selected the top 3 brands and collected patterns as well. A research archetype was selected based on 3-D virtual clothing and developed into 4 different patterns with different sleeve cap heights. Appearance evaluation and a motion functionality evaluation were then conducted in order to select a final research archetype adequate for sports climbing based on evaluation findings. In addition, this study identified aesthetical problems of the final research archetype produced based on functionality that could suggest an archetype for a climbing jacket that could be visually satisfying through appearance evaluations and motion functionality evaluations.

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가)

  • Cho, Tae-Jun;Moon, Jae-Woo;Kim, Jong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

Analysis of Strengthening Structures of Steel Manhole Cover (강재 맨홀뚜껑의 보강구조 해석)

  • Kim, Heung-Kyu;Yang, Young-Soo;Bae, Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.54-62
    • /
    • 2014
  • Manhole cover, which is usually made of grey cast iron and consists of frame and cover, should have enough strength to support the heavy traffic load. The manhole cover made of cast iron has heavy weight to handle manually and is vulnerable to impact force with its brittle characteristics. Moreover, its production process of casting has been regulated in terms of environmental pollution. In this study, steel manhole cover is proposed to substitute the cast cover with a series of structural analyses to confirm its strength to support the test load for manhole cover. The cover of the proposed steel manhole cover is made of thin circular pate and stiffeners below the plate. Rectangular columns and hollow circular plate were selected for the shape of the stiffener. In order to give enough strength for the cover to behave within elastic range in the loading, strengthening structures of the cover were varied with increasing the number and the size of the stiffeners. The results of the analyses revealed that when both the hollow circular stiffener and cross stiffeners were additionally applied at the same time to the steel cover with longitudinal stiffeners, the maximum stress level in the cover could be reduced to that level presented in the cast cover.

Torsional Micromechanical Switching Element Including Bumps for Reducing the Voltage Difference Between Pull-in and Release (Pull-in과 release 전압차 감소용 돌기구조를 갖는 비틀림형 초소형 기계적 스위칭 소자)

  • Ha, Jong-Min;Han, Seung-O;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.471-475
    • /
    • 2001
  • ln this paper, a micromachined micromechanical switch is presented. The presented switch is operated in the vertical direction to the substrate by an electrostatic force between two parallel plates. The moving plate is pulled down to connect the bumps of the bias node$(V_{DD}/ or GND)$ to the bumps of the output node when a oltage difference exists between the moving plate and the input plate. The switch was designed to operate at a low switching voltage$(\risingdotseq5V)$ by including a large-area, narrow-gap, parallel plate capacitor A theoretical analysis of the designed switch was performed in order to determine its geometry fitting the desired pull-in voltage and release voltage. The designed switch was fabricated by surface micromachining combined with Ni electroplating. From the experimental results of the fabricated switch, its pull-in voltage came Out to be less than 5V and the measured maximum allowable current was 150mA. The measured average ON-state resistance was about 8$\Omega$, and the OFF-state resistance was too high to be measured with digital multimeter.

  • PDF

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF