• Title/Summary/Keyword: maximum element order

Search Result 436, Processing Time 0.027 seconds

The Radiative Characteristics of EUV-B over the Korean Peninsula and Exposure Time for Synthesizing Adequate Vitamin D (한반도 EUV-B 복사의 특성분석 및 적정 비타민D 합성을 위한 노출시간 산출)

  • Kwak, Min Kyoung;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.123-130
    • /
    • 2011
  • In this study, we have analyzed the radiative characteristics of erythemal ultraviolet-B (EUV-B from 1999 to 2005) over the Korean Peninsula. EUV-B measured at Gangneung, Anmyondo, Mokpo, and Gosan represents the measurements from clean areas and that at Seoul represents from a polluted area. The magnitudes of EUV-B increase in proportion to the latitudinal decrease. Monthly mean variation of EUV-B at noon shows the maximum value of $158.5mWm^{-2}$ in August and the minimum value of $36.4mWm^{-2}$ in December in the clean areas. Seasonal mean diurnal variation of EUV-B shows a peak around noon (12:00 ~ 13:00 hr) and its intensity varies along with a season in order of summer > spring > fall > winter. The maximum value of $56.4mWm^{-2}$ in summer is three times higher than that in winter ($14.3mWm^{-2}$). The value of EUV-B in the polluted area is lower than that in the clean areas, resulting from the effects of the blocking, reflection, and scattering of EUV-B due to high concentrations of PM10. UV-B is an essential element to synthesize vitamin D in human body. 200 IU(International Unite) of vitamin D can be formed by an exposure of 6-10% of body surface area to 0.5 MED(Minimal Erythemal Dose). In order to form vitamin D, the calculated exposure times to EUV-B are 15 min. in spring, 12 min. in summer, 18 min. in fall, and 37 min. in winter for the clean areas and 16, 16, 24, and 37 min. for the polluted area.

Effect of Aging Treatment on the Tensile Properties of Mg-Nd-Y-Zr-Zn Casting Alloys (Mg-Nd-Y-Zr-Zn 주조합금의 인장특성에 미치는 시효처리의 영향)

  • Kim, Hyun-Sik;Ye, Dea-Hee;Kang, Min-Cheol;Kim, In-Bea
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.266-271
    • /
    • 2008
  • Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and $300^{\circ}C$ for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature ($150^{\circ}C$). Hardness and high-temperature ($150^{\circ}C$) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at $250^{\circ}C$ for 3 hours. The maximum tensile, yield strength and elongation at $150^{\circ}C$ were 237MPa, 145MPa and 13.6%, respectively, at $250^{\circ}C$ for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at $250^{\circ}C$ This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and $Mg_3Y_2Zn_3$.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method (유한요소법을 이용한 홀 확장 잔류응력 해석)

  • Kim, Cheol;Yang, Won-Ho;Heo, Seong-Pil;Jeong, Gi-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are expanding rate, inserting direction of mandrel, material properties dtc. Despite its importance to aerospace industiries, little attention has been devoted to the accurate modeling of the process. In this paper, three-dimensional finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress. To prove the results of FE analysis, the residual strain was measured by strain gage in cold expansion test. Maximum compressive residual stress could be increase about 7 percentage using the 2-step cold expansion method.

A FINITE ELEMENT STRESS ANALYSIS OF TOOTH AND IMPLANT SUPPORTED FIXED PARTIAL DENTURE ACCORDING TO THE LOCATION OF NON-RIGID CONNECTOR (치아 및 임플랜트 지지 고정성 국소의치의 비고정성 연결부의 위치에 따른 유한요소법적 응력분석)

  • An, Byoung-Ju;Hwang, Young-Pil;Kay, Kee-Sung;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.807-823
    • /
    • 1995
  • The purpose of this study was to analyze the stress distribution and the displacement happened to the abutment, the prosthesis, and the surrounding structure according to the location of the nonrigid connector, that is, the keyway in the distal of canine and the mesial of the implant in the three unit fixed partial denture. Two-dimensional finite element model ws constructed and analyzed for the stress distribution and the displacement using software ABAQUS(Ver 5.2 Hibbitt, Karisson & Sorenson, Inc., 1992). After finishing the finite element model, the distribution load of 15kg was applied simultaneously to the all cusp tips of the prosthesis and the concentration load of 10㎏ was applied respectively at the each cusp tip of the prosthesis. The following results were obtained : 1. The amount of displacement of the implant was greater in case of the non-rigid connection than the rigid connection, and the more favorable displacement was shown in case of the IKb than the IKa. 2. Without regard to the connection method, the stress represented at the surrounding bone was similar, and the more favorabel stress distribution was shown in case of IKb. 3. The maximum stress was concentrated at the fastening screw and the neck of implant in all experimental groups, and their stress magnitudes were in the order of IKb, IR, and IKa.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE MINIMUM CONTACT FRACTION OF BONE-IMPLANT INTERFACE (골조직과 임플랜트 계면의 최소접촉분율에 관한 삼차원 유한요소분석적 연구)

  • Jang, Kyoung-Soo;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.627-646
    • /
    • 1997
  • In order to find the degree of osseointegration at bone-implant interface of clinically successful implants, models including the 3.75mm wide, 10mm long screw type $Br{\aa}nemark$ implant as a standard and cylinder, 15mm long, 5.0mm wide, two splinted implants, and implants installed in various cancellous bone density were designed. Also, the amount of load and material of prostheses were changed. The stress and minimum contact fraction were analyzed on each model using three-dimensional finite element method(I-DEAS and ABAQUS version 5.5). The results of this study were as follows. 1. 10mm long, 3.75mm diameter-screw type implant had $36.5{\sim}43.7%$ of minimum contact fraction. 2. Cylinder type implant showed inferior stress distribution and higher minimum contact fraction than screw type. 3. As implant length was increased, minimum contact fraction was increased a little, however, maximum principal stress was decreased. 4. Implants with a large diameter had lower stress value with slightly higher minimum contact fraction than standard screw type. 5. Two splinted implants showed no change of minimum contact fraction. 6. The higher bone density, the lower stress value. 7. The material of occlusal surface had no effect on the stress of the bone-implant interface.

  • PDF

Environmental Contamination and Bioavailability of Toxic Element around the Daduk Mine Area, Korea (다덕광산 주변지역에서의 독성원소들의 환경오염 및 인체흡수도)

  • ;Ben A Klinck;Yvette Moore
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.273-282
    • /
    • 2000
  • In order to investigate the extent and degree of arsenic and heavy metal contamination and the bioavailability of toxic elements around the abandoned mine in Korea, an environmental geochemical survey was undertaken in the Daduk mine. After appropriate preparation, tailings, soil, stream sediment, crop plant and fingernail samples were analysed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of 8,782 mg/kg As, 8.3 mg/kg Cd, 489 mg/kg Cu, 3,638 mg/kg Pb and 919 mg/kg Zn were found in tailings from the Daduk mine. These significant concentrations can impact on soils and sediments around the tailing ponds. Mean concentrations of As, Cd, Pb, Cu and Zn in soils are significantly higher than those in world average soil, especially for As and Pb. Element concentrations in sediments decrease with distance from the tailing ponds due to a dilution effect by the mixing of uncontaminated sediments. Arsenic and Cd are elevated in rice grains and stalks, and Cu and Zn concentrations in chinese cabbage, sesame and bean leaves are higher than the upper limit values for normal plant. Arsenic concentration in fingernails of farmers are higher than the normal level with a maximum value of 1.5 mg/kg. The post-ingestion bioavailability of toxic heavy metals in some paddy and farmland soils has been also investigated using the SBET (simple bioavailability extract test) method. The method utilises synthetic leaching fluids closelyanalogous to those of the human stomach. The quantities of As, Cd, Cu, Pb and Zn extracted from paddy soils after 1 hour indicated 15.9, 65.4, 46.2, 39.4 and 29.4% bioavailability, respectively and for farmland soils, 12.4, 26.0, 31.2, 29.3 and 19.4% bioavailability, respectively. The results of the SBET indicate that regular ingestion of soils by the local population could pose a potential health threat due to long-term toxic element exposure.

  • PDF

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Application of Finite Element Analysis for Structural Stability Evaluation of Modern and Contemporary Sculptures: 'Eve 58-1' by Man Lin Choi

  • Kwon, Hee Hong;Shin, Jeong Ah;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.277-288
    • /
    • 2022
  • 'Eve 58-1', the subject of this study is a statue made of plaster and its structural stability was evaluated by utilizing the CAE program in order to prevent the risk of damage arising from impact and vibration that are generated during the packaging and transportation process given its material characteristics. CAE is an abbreviation for Computer Applied Engineering for realization by predicting changes at the time of application of virtual physical energy. It is applied by reflecting the physical property conditions and each boundary condition of plaster, and the digital images of the internal and external structure of the work were acquired through 3D scanning and CT analysis for interpretation by executing finite element modeling. When acceleration is applied to the work in the direction of its own weight, the left-right side and the front-rear side, it was possible to confirm a maximum displacement value of 15.24 mm in the head section of the front-rear side direction that has been tilted by approximately 27° from the Y-axis and the largest stress value of 12.46 MPa was at the left ankle section. The corresponding results confirmed that the left ankle section is the most vulnerable area and the section for which precautions need to be exercised and supplemented at the time of transporting the work by means of objective values.