• Title/Summary/Keyword: maximum detection probability

Search Result 99, Processing Time 0.025 seconds

Determination of Optimal Sensor Locations for Modal System Identification-based Damage Detection on Structures (주파수영역 손상식별 SI 기법에 적응할 최적센서 위치결정법)

  • 권순정;신수봉;박영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.95-102
    • /
    • 2003
  • To define an analytical model for a structural system or to assess damage in the system, system identification(SI) methods have been developed and widely applied. The paper presents a method of determining optimal sensor location(OSL) based on the maximum likelihood approach, which is applicable to modal SI methods. To estimate unknown parameters reliably, it is necessary that the information provided by the experiment should be maximized. By applying the Cramer-Rao inequality, a Fisher information matrix in terms of the probability density function of measurements is obtained from a lower bound of the estimation error. The paper also proposes a scheme of determining of OSL on damaged structures by using maximum strain energy factor. Simulation studies have carried out to investigate the proposed OSL algorithm for both undamaged and damaged structures.

  • PDF

Effective Construction Method of Defect Size Distribution Using AOI Data: Application for Semiconductor and LCD Manufacturing (AOI 데이터를 이용한 효과적인 Defect Size Distribution 구축방법: 반도체와 LCD생산 응용)

  • Ha, Chung-Hun
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.151-160
    • /
    • 2008
  • Defect size distribution is a probability density function for the defects that occur on wafers or glasses during semiconductor/LCD fabrication. It is one of the most important information to estimate manufacturing yield using well-known statistical estimation methods. The defects are detected by automatic optical inspection (AOI) facilities. However, the data that is provided from AOI is not accurate due to resolution of AOI and its defect detection mechanism. It causes distortion of defect size distribution and results in wrong estimation of the manufacturing yield. In this paper, I suggest a size conversion method and a maximum likelihood estimator to overcome the vague defect size information of AOI. The methods are verified by the Monte Carlo simulation that is constructed as similar as real situation.

Interference Avoidance through Pilot-Based Spectrum Sensing Algorithm in Overlaid Femtocell Networks

  • Sambanthan, Padmapriya;Muthu, Tamilarasi
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Co-channel interference between macro-femtocell networks is an unresolved problem, due to the frequency reuse phenomenon. To mitigate such interference, a secondary femtocell must acquire channel-state knowledge about a co-channel macrocell user and accordingly condition the maximum transmit power of femtocell user. This paper proposes a pilot-based spectrum sensing (PSS) algorithm for overlaid femtocell networks to sense the presence of a macrocell user over a channel of interest. The PSS algorithm senses the pilot tones in the received signal through the power level and the correlation metric comparisons between the received signal and the local reference pilots. On ensuring the existence of a co-channel macrocell user, the maximum transmit power of the corresponding femtocell user is optimized so as to avoid interference. Time and frequency offsets are carefully handled in our proposal. Simulation results show that the PSS algorithm outperforms existing sensing techniques, even at poor received signal quality. It requires less sensing time and provides better detection probability over existing techniques.

Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(I) - On the Gamma Distribution Models - (Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도 (I) -Gamma 분포 모형을 중심으로-)

  • 이순혁;박명근;정연수;맹승진;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.83-95
    • /
    • 1997
  • This study was conducted to derive optimal design floods by Gamma distribution models of the annual maximum series at eight watersheds along Geum , Yeong San and Seom Jin river Systems, Design floods obtained by different methods for evaluation of parameters and for plotting positions in the Gamma distribution models were compared by the relative mean errors and graphical fit along with 95% confidence interval plotted on Gamma probability paper. The results were analyzed and summarized as follows. 1.Adequacy for the analysis of flood flow data used in this study was confirmed by the tests of Independence, Homogeneity and detection of Outliers. 2.Basic statistics and parameters were calculated by Gamma distribution models using Methods of Moments and Maximum Likelihood. 3.It was found that design floods derived by the method of maximum likelihood and Hazen plotting position formular of two parameter Gamma distribution are much closer to those of the observed data in comparison with those obtained by other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4.Reliability of derived design floods by both maximum likelihood and method of moments with two parameter Gamma distribution was acknowledged within 95% confidence interval.

  • PDF

Smoking detection system based on wireless ad-hoc network using Raspberry Pi boards (라즈베리파이를 이용한 무선 애드혹 네트워크 기반의 흡연 모니터링 시스템)

  • Park, Sehum;Kim, Seong Hwan;Ryu, Jong Yul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.65-67
    • /
    • 2018
  • We introduce a system that detects smoking in a specific area. The proposed system is implemented on a wireless ad hoc network consisting of Raspberry Pi boards. It is more economical owing to low-cost device than commercial smoking monitoring system and is scalable than the existing system with single Raspberry Pi. In this paper, the probability density function of carbon monoxide concentration during smoking and non-smoking is approximated as Gauusian distribution, respectively, using data measured from sensors for a long time. Based on this, a maximum likelihood detection technique is adopted to estimate the smoking status by observing the concentration of carbon monoxide. We aim at improving the reliability by estimating the smoking status using the collected values from multiple sensors connected to the ad hoc network.

  • PDF

Estimating the Rumor Source by Rumor Centrality Based Query in Networks (네트워크에서 루머 중심성 기반 질의를 통한 루머의 근원 추정)

  • Choi, Jaeyoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.7
    • /
    • pp.275-288
    • /
    • 2019
  • In this paper, we consider a rumor source inference problem when sufficiently many nodes heard the rumor in the network. This is an important problem because information spread in networks is fast in many real-world phenomena such as diffusion of a new technology, computer virus/spam infection in the internet, and tweeting and retweeting of popular topics and some of this information is harmful to other nodes. This problem has been much studied, where it has been shown that the detection probability cannot be beyond 31% even for regular trees if the number of infected nodes is sufficiently large. Motivated by this, we study the impact of query that is asking some additional question to the candidate nodes of the source and propose budget assignment algorithms of a query when the network administrator has a finite budget. We perform various simulations for the proposed method and obtain the detection probability that outperforms to the existing prior works.

Coalition based Optimization of Resource Allocation with Malicious User Detection in Cognitive Radio Networks

  • Huang, Xiaoge;Chen, Liping;Chen, Qianbin;Shen, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4661-4680
    • /
    • 2016
  • Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. Collaborative spectrum sensing is known as a promising technique to improve the performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the performance of CRNs. In this paper, we propose a coalition based malicious users detection (CMD) algorithm to detect the malicious user in CRNs. The proposed CMD algorithm can efficiently detect MUs base on the Geary'C theory and be modeled as a coalition formation game. Specifically, SSDF attack is one of the key issues to affect the resource allocation process. Focusing on the security issues, in this paper, we analyze the power allocation problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The MPA algorithm is divided into two steps: the MUs detection step and the optimal power allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the MUs detection probability and the energy consumption of MUs detection. Secondly, in the optimal power allocation step, we use the Lagrange dual decomposition method to obtain the optimal transmission power of each SU and achieve the maximum utility of the whole CRN. Numerical simulation results show that the proposed CMD and MPA scheme can achieve a considerable performance improvement in MUs detection and power allocation.

A Study of the Optimal Deployment of Tsunami Observation Instruments in Korea (지진해일 조기탐지를 위한 한국의 지진해일 관측장비 최적 위치 제안 연구)

  • Lee, Eunju;Jung, Taehwa;Kim, Ji-Chang;Shin, Sungwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.607-614
    • /
    • 2019
  • It has been an issue among researchers that the tsunamis that occurred on the west coast of Japan in 1983 and 1993 damaged the coastal cities on the east coast of Korea. In order to predict and reduce the damage to the Korean Peninsula effectively, it is necessary to install offshore tsunami observation instruments as part of the system for the early detection of tsunamis. The purpose of this study is to recommend the optimal deployment of tsunami observation instruments in terms of the higher probability of tsunami detection with the minimum equipment and the maximum evacuation and warning time according to the current situation in Korea. In order to propose the optimal location of the tsunami observation equipment, this study will analyze the tsunami propagation phenomena on the east sea by considering the potential tsunami scenario on the west coast of Japan through numerical modeling using the COrnell Multi-grid COupled Tsunami (COMCOT) model. Based on the results of the numerical model, this study suggested the optimal deployment of Korea's offshore tsunami observation instruments on the northeast side of Ulleung Island.

An Improved Acquisition of the Noncoherent DS/SS-CSK (비동기식 DS/SS-CSK 통신의 개선된 초기동기)

  • 김종헌;이한섭;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1797-1805
    • /
    • 1993
  • An algorithm for the threshold decision from the maximum mismatching correlation value in a direct-sequence spread-spectrum system is presented. This algorithm is named the TDMMC(Threshold Decision from the Maximum Mismatching Correlation value). The purpose of the algorithm is to set the decision threshold in the system which will provide large probability of signal detection. Using this algorithm, the proper setting of the threshold for various SNRs is possible. An additional block called the Threshold Block is used to improve the system performance. The result from the computer simmulation has shown that appling the TDMMC to the noncoherent DS/SS-CSK system can achieve performance improvement.

  • PDF

Performance Comparison of MISP-based MANET Strong DAD Protocol

  • Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3449-3467
    • /
    • 2015
  • A broadcast operation is the fundamental transmission technique in mobile ad-hoc networks (MANETs). Because a broadcast operation can cause a broadcast storm, only selected forwarding nodes have the right to rebroadcast a broadcast message among the one-hop and two-hop neighboring nodes of a sender. This paper proposes the maximum intersection self-pruning (MISP) algorithm to minimize broadcasting redundancy. Herein, an example is given to help describe the main concept of MISP and upper bounds of forward node have been derived based on induction. A simulation conducted demonstrated that when conventional blind flooding (BF), self-pruning (SP), an optimized link state routing (OLSR) multipoint relay (MPR) set, and dominant pruning (DP), are replaced with the MISP in executing Strong duplicate address detection (DAD), the performances in terms of the energy consumption, upper bounds of the number of forward nodes, and message complexity have been improved. In addition, to evaluate the performance in reference to the link error probability, Pe, an enhancement was achieved by computing a proposed retransmission limit, S, for error recovery based on this probability. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating with limited portable energy where Strong DAD reacts differently to link errors based on the operational procedures.