• Title/Summary/Keyword: maximum cell density

Search Result 427, Processing Time 0.028 seconds

Continuous high cell density culture of Anaerobiospirillum succiniciproducens with membrane filtration for the production of succinic acid

  • Lee, Pyeong-Cheon;Lee, U-Gi;Lee, Sang-Yeop;Jang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.338-341
    • /
    • 2000
  • An internal membrane bioreactor system was employed for continuous succinic ac id production from glucose in order to prove its performance and practicality. Succinic acid-producing Anaerobiospirillum succiniciproducens required more $CO_2$ for the proper growth and succinic acid production in cell recycled continuous culture than in batch culture. The maximum productivity obtained in cell recycled continuous culture was about 3.3 g/L-h which was ca. 3.3 times higher than that obtained in batch culture.

  • PDF

Culture of Endothelial Cells by Transfection with Plasmid Harboring Vascular Endothelial Growth Factor

  • Chang, Sungjaae;Sohn, Insook;Park, Inchul;Sohn, Youngsook;Hong, Seokil;Choe, Teaboo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.106-109
    • /
    • 2000
  • Vascular endothelial cells (EGs) are usually difficult to culture to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement(ECGS). The expression of VEGF by HUVEC tansfected with Vegf GENE was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS. However, when the culture medium was supplied with 2.5 ng/ml of basic fibroblast growth factor (bFGF), a synergistic effect effect of VEGE and bFGF was observed. In this case, the final cell density was recovered was recovered up to about 78% of maxium value.

  • PDF

Kinetics of Converting Single Chain Urokinase Type Plasminogen Activator into Two Chain Plasminogen Activator in Cultivating HEK Cells with Low Serum Containing Medium (저혈청 배지에서 생산된 scu-PA의 tc-PA로의 전환에 관한 연구)

  • 김영남;김현구
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.48-54
    • /
    • 1994
  • A modified amidolytic assay and a fibrin plate method were used to accurately measure the concentration of single chain urokinase type plasminogen activator (scu-PA) and two-chain urokinase type plasminogen activator (tc-PA) in the spent media. $1.65{\times}10^6$(viable cells/ml) of maximum cell density and 1670(IU/ml) of scu-PA concentration were obtained in 1% serum containing medium. The overall conversion ratio from scu-PA to tc-PA was less than 10%. In the results of batch cultivation in a spinner vessel, $4.43{\times}10^6(total cells/ml)$ of maximum cell density and 1560(IU/ml) of scu-PA concentration was observed. The maximum scu-PA concentration and specific scu-PA Productivity were obtained in 1760(IU/ml) and $3.13{\times}10^{-4}(IU/cell)$, respectively, from perfusion cultivation. The conveysion ratios from batch, fed-batch and perfusion cultivations were less than 12%, which means that about 90% of scu-PA secreted from the cells can be maintained during the cultivations.

  • PDF

Can a Fermentation Gas Mainly Produced by Rumen Isotrichidae Ciliates be a Potential Source of Biohydrogen and a Fuel for a Chemical Fuel Cell?

  • Piela, Piotr;Michalowski, Tadeusz;Miltko, Renata;Szewczyk, Krzysztof W.;Sikora, Radoslaw;Grzesiuk, Elzbieta;Sikora, Anna
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1092-1100
    • /
    • 2010
  • Bacteria, fungi, and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi; and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol $H_2$ per mole of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of $1.66\;kW/m^2$ (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was $128\;W/m^3$ but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 h.

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Growth Rate and Biomass Productivity of Chlorella as Affected by Culture Depth and Cell Density in an Open Circular Photobioreactor

  • Liang, Fang;Wen, Xiaobin;Geng, Yahong;Ouyang, Zhengrong;Luo, Liming;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.539-544
    • /
    • 2013
  • The effects of culture depth (2-10 cm) and cell density on the growth rate and biomass productivity of Chlorella sp. XQ-200419 were investigated through the use of a self-designed open circular pond photobioreactor-imitation system. With increases in culture depths from 2 to 10 cm, the growth rate decreased significantly from 1.08 /d to 0.39 /d. However, the biomass productivity only increased slightly from 8.41 to 11.22 $g/m^2/d$. The biomass productivity (11.08 $g/m^2/d$) achieved in 4 cm culture with an initial $OD_{540}$ of 0.95 was similar to that achieved in 10 cm culture with an initial $OD_{540}$ of 0.5. In addition, the duration of maximal areal productivity at a 4 cm depth was prolonged from 1 to 4 days, a finding that was also similar to that of the culture at a 10 cm depth. In both cases, the initial areal biomass densities were identical. Based on these results and previous studies, it can be concluded that the influence of culture depth and cell density on areal biomass productivity is actually due to different areal biomass densities. Under suitable conditions, there are a range of optimal biomass densities, and areal biomass productivity reaches its maximum when the biomass density is within these optimal ranges. Otherwise, biomass productivity will decrease. Therefore, a key factor for high biomass productivity is to maintain an optimal biomass density.

Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) (중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.

Enhancement of Tissue Type Plasminogen Activator (tPA) Production from Recombinant CHO Cells by Low Electromagnetic Fields

  • Lee, Seo-Ho;Lee, Hyun-Soo;Lee, Mi-Kyoung;Lee, Jin-Ha;Kim, Jong-Dai;Park, Young-Shik;Lee, Shin-Young;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.457-462
    • /
    • 2002
  • Low Electromagnetic Field (EMF) intensity in the range of $1{\mu}T\;to\;10{\mu}T$(Tesla) was found to enhance the growth of CHO cells and the production of tPA in batch and perfusion cultivations. At $1{\mu}T\;intensity,\;1.3{\times}10^7$ viable cells/ml of maximum cell density and 80 mg/l of maximum tPA production were obtained in batch cultivation, compared to $2.8{\times}10^6$ viable cells/ml and 59 mg tPA/1 in unexposed case (control). A similar trend was observed in the perfusion process, where it was possible to obtain $1.2{\times}10^7$ viable cells/ml of maximum cell density and 81 mg tPA/l of maximum tPA production by more than 80 days of cultivation. However, there was not much difference between $1{\mu}T\;and\;10{\mu}T$ in perfusion cultivation, possibly due to better environmental growth conditions being maintained by continuous feeding of fresh medium into the reactor. On the contrary, both cell growth and tPA production were severely inhibited at higher than 1 mT intensity, showing no growth at 10 mT exposure. Specific growth rate was linearly correlated to specific tPA production rate at $1{\mu}T$EMF intensity, which represents a partially growth-related relationship. It was also found that a large amount of $Ca^2+$ was released at low EMF intensity, even though the cell growth was not much affected. Low EMF intensity significantly improved both cell growth and tPA production, and tPA production seemed to be more affected than the cell growth, possibly due to the changes of cell membrane characteristics. It can be concluded that the elaboration of EMF intensity less than $10{\mu}T$ could improve cell growth and tPA production, but mainly tPA secretion through batch or perfusion process in a bioreactor.

Characteristics of Immobilized Culture of Mentha piperita Cells for Oil Production

  • Ha, Won Ho;Gun Jo Woo;Hyong Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.132-136
    • /
    • 1996
  • To investigate the characteristics of immobilized peppermint (Mentha piperita) cells, dry cell weight (DCW), change of cell viability, and oil productivity of the immobilized cells were determined. Peppermint cells were immobilized in polyurethane (PU) foams of $5{\times}5{\times}5$ mm and cultured in a shaking flask. The maximum DCW was 2.1 mg per foam piece after 20 days of cultivation and the cell density was approximately 420 mg per flask containing 200 foams in 200 ml medium. For the first five days of cultivation, the cell viability was about 80$%$ and decreased to 70$%$ during 5 to 20 days of cultivation. The maximum oil productivity, 148 mg/l was achieved after 40 days of cultivation. The immobilized cells were also cultivated in a bioreactor, equipped with a round spiral type impeller, containing 2, 400 PU foams. The cell viability after 30 days of cultivation with chitosan as an elicitor in the bioreactor was 67$%$ and DCW was 2.0 mg per foam piece. Though the cell viability was relatively high in the bioreactor system, the oil productivity was relatively lower than that of the flask system.

  • PDF

High-Voltage Liquid-Electrolyte Microbatteries Inspired from Electric Eels (전기뱀장어의 전기발생을 모사한 고전압 액체 전해질 미소전지)

  • Kim, Mun-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.469-473
    • /
    • 2009
  • We present high-voltage liquid-electrolyte microbatteries, inspired from the high-voltage generation mechanism of electric eels using serially connected multiple-cell arrays. In the microbatteries, we purge air into the electrolyte filled in a channel layer to isolate serially connected multiple cell arrays using three surface-tension valves (cell-front, outlet, and cell-end valves). Compared to the previous multi-cell stack or interconnection, present microbatteries provide a reduced multi-cell charging time. We have designed and characterized four different prototypes C1, C10, C20, and C40 having 1, 10, 20, and 40 cells, respectively. In the experimental study, the threshold pressures of cell-front, outlet, and cell-end valves were measured as $460{\pm}47$, $1,000{\pm}53$, and $2,800{\pm}170$ Pa, respectively. The average charging time for C40 was measured as $26.8{\pm}4.9$ seconds where the electrolyte and air flow-rates are 100 and $10{\mu}l/min$, respectively. Microbatteries showed the maximum voltage of 12 V (C40), the maximum power density of $110{\mu}W/cm^2$ (C40), and the maximum power capacity of $2.1{\mu}Ah/cm^2$ (C40). We also proposed a tapered-channel to remove the reaction gas from the cell chamber using a surface tension effect. The present microbatteries are applicable to high-voltage portable power devices.