• Title/Summary/Keyword: maximum cell density

Search Result 428, Processing Time 0.03 seconds

Real-time Micro-algae Flocculation Analysis Method Based on Lens-free Shadow Imaging Technique (LSIT) (렌즈프리 그림자 이미징 기술을 이용한 실시간 미세조류 응집현상 분석법)

  • Seo, Dongmin;Oh, Sangwoo;Dong, Dandan;Lee, Jae Woo;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • Micro-algae, one of the biological resources for alternative energy, has been heavily studied. Among various methods to analyze the status of the micro-algae including counting, screening, and flocculation, the flocculation approach has been widely accepted in many critical applications such as red tide removal study or microalgae resource study. To characterize the flocculation status of the micro-alga. A traditional optical modality, i.e., photospectrometry, measuring the optical density of the flocs has been frequently employed. While this traditional optical method needs shorter time than the counting method in flocculation status analysis, it has relatively lower detection accuracy. To address this issue, a novel real-time micro-algae flocculation analysis method based on the lens-free shadow imaging technique (LSIT) is introduced. Both single cell detection and floc detection are simultaneously available with a proposed lens-free shadow image, confirmed by comparing the results with optical microscope images. And three shadow parameters, e.g., number of flocs, effective area of flocs, and maximum size of floc, enabling quantification of the flocculation phenomenon of micro-alga, are firstly demonstrated in this article. The efficacy of each shadow parameter is verified with the real-time flocculation monitoring experiments using custom developed cohesive agents.

Manufacture of Inorganic Materials Thin Film Solar Cell using Titanium Dioxide (이산화티타니움을 사용한 무기질 박막형 태앙전지의 제작)

  • Lee, Kyung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.451-463
    • /
    • 2009
  • The purpose of this research is to develop thin film materials and fabrication process for efficient $TiO_2$/CdTe solar cells. In this work photocatalyst titanium dioxide was prepared by sol-gel procedure according to reaction condition, the mole ratio of $H_2O$/TTIP, pH of solution and aging condition of powder. The prepared titanium dioxide was thermally treated from 300 to $750^{\circ}C$. Maximum intensity of anatase phase of titanium dioxide was achieved by calcination at $600^{\circ}C$ for 2 hr. And it was mixture of anatase and rutile phase when temperature of calcination was $750^{\circ}C$. It has been known that the properties of synthesized titanium dioxide according to aging time and calcination temperature was converted to anatase phase crystal on increasing of aging time. Also the current density has been increased with aging time and temperature, the efficiency has been increased with because of reason on above results. The formation of chemical bonding on oxygen and cadmium telluride under oxygen circumstances had been observed, and oxygen of thin film surface on cadmium telluride had been decreased with the treatment of chromate and hydrazine. As results had been shown that the energy conversion efficiency of cadmium telluride use by rapidly treatmented heat at the condition of $550^{\circ}C$ under air circumstance got 12.0%, 6.0% values according to $0.07cm^2$, $1.0cm^2$ surface area, respectively.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Growth and optical characterization of $CuInSe_2$ single crystal thin film for solar cell application (태양전지용 $CuInSe_2$단결정 박막 성장과 광학적 특성)

  • 백승남;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.202-209
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the $CuInSe_2$single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInSe_2$compound crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$single crystal thin films measured from Hall effect by van der Pauw method. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr. From the photoluminescence measurement on $CuInSe_2$single crystal thin film, we observed free exciton ($E_x$) existing only high quality crystal and neutral bound exciton ($A^{\circ}$, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral donor bound exciton were 7 meV and 5.9 meV, respectivity. By haynes rule, an activation energy of impurity was 59 meV.

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer (PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구)

  • Kim, Seung Ho;Choi, Jae Young;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

Growth of CdS thin film using hot wall epitaxy method and their photoconductive characteristics (HWE 방법에 의한 CdS 박막의 성장과 광전도 특성)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.341-350
    • /
    • 1996
  • The CdS thin films are grown on quartz plate by hot wall epitaxy. The source and substrate temperature is $590^{\circ}C$ and $400^{\circ}C$ respectively, and thickness of the film is $2.5\;\mu\textrm{m}$. Using extrapolation method of X-ray diffraction patterns for the CdS thin film, it was found hexagonal structure whose lattice constant a and c were $4.137\;{\AA}$ and $6.713\;{\AA}$, respectively. Hall effect on this sample was measured by the method of van der Pauw and studied on cattirer density and mobility depending on temperature. From hall data, the mobility was likely to be decreased by piezoelectric scattering in the temperature range 30 K to 200 K and by polar optical scattering in the temperature range 200 K to 293 K. In order to explore the applicability as a photoconductive cell we measured the sensitivity ($\gamma$), the ratio of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The results indicated that for the samples annealed in Cu vapor the photoconductive characteristics are the best. Then we obtained the sensitivity of 0.99, the value of pc/dc of $9.42{\times}10^{6}$, the MAPD of 318 mW, and the rise and decay time of 10 ms and 9 ms, respectively.

  • PDF

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture (Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절)

  • Kim, Jun-Pyo;Park, Tai-Hyun;Kim, Mi-Sun;Sim, Sang-Jun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.453-457
    • /
    • 2005
  • We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Chemo-Mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine (DDM, DDS) Resin Casting Systems (DGEBA/방향족 아민(DDM, DDS) 경화제의 벤젠링 사이의 관능기 변화가 물성 변화에 미치는 영향에 대한 연구)

  • 명인호;정인재;이재락
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with diaminodiphenyl methane (DDM), diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work, the effect of aromatic amine curing agents. In contrast, the results show that the DGEBA/DDS cure system having the sulfone structure between the benzene rings had higher values in the conversion of epoxide, density, shrinkage (%), glass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBA/DDM cure system having methylene structure between the benzene rings, whereas the DGEBA/DDM cure system presented higher values in the maximum exothermic temperature, thermal expansion coefficient, and thermal stability. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property and stem from the effect of the conversion ratio of epoxide group. The result of fractography shows that the each grain size of the DDM/DGEBA system with feather-like structure is larger than that of the DDS/DGEBA system.

  • PDF