• Title/Summary/Keyword: maximum and minimum operations

Search Result 92, Processing Time 0.023 seconds

An Analog Maximum, Median, and Minimum Circuit in Current-mode

  • Sangjeen, Noawarat;Laikitmongkol, Sukum;Riewruja, Vanchai;Petchmaneelumka, Wandee;Julsereewong, Prasit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.960-964
    • /
    • 2003
  • In this paper, the CMOS integrated circuit technique for implementing current-mode maximum and minimum operations scheme is described. The maximum and minimum operations are incorporated into the same scheme with parallel processing. Using this scheme as the basic unit, an analog three-input maximum, median, and minimum circuit is designed. The performance of the proposed circuit shows a very sharp transfer characteristic and high accuracy. The proposed circuit achieves a high-speed operation, which is suitable for real-time systems. The PSPICE simulation results demonstrating the characteristic of the proposed circuit are included.

  • PDF

Algorithms for Maximum Integer Multiflow and Multicut in a Ring Network (링 네트워크에서의 최대 다품종정수흐름문제와 최소 다중절단면문제에 대한 해법)

  • Myung, Young-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • We study the maximum integer multiflow problem and the minimum multicut problem in a ring network. Both problems in a general network are known to be NP-hard. In this paper, we develop polynomial time algorithms to solve the problems. We also prove that even In a ring network, maximum multiflow is not always integral, which implies that the amount of maximum integer flow does not always reach the minimum capacity of multicut.

On the Characteristics of Maximum and Minimum of Random Variables in Stochastic Models (확률모형에 등장하는 최대와 최소의 특성에 관한 소고)

  • 채경철;김진동;양원석
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2001
  • Maximum and minimum of rendom variables are frequently encountered in the stochastic modelling for various OR problems. We summarize and extend characteristics of maximum and minimum, emphasizing the case in which random variables are independent and all of them except one are distributed exponential. As an application, we derive a transform-free expression for the M/G/1 queue length distribution.

  • PDF

Ground fault circuit interrupter design (누전차단기의 설계와 제작)

  • 설승기
    • 전기의세계
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 1980
  • The hazards of electrical shock are well known, but the conventional ground fault circuit breakers did not provide the statis factory safety for human body. Thus this paper considers the standards of performance that they must meet, and describes the new tripping mechanism the operations and the improvements. The experiment at new G.F.C.I. indicates maximum tripping time 25msec minimum sensitive leakage current 25mA and maximum nonaperation leakage current 15mA.

  • PDF

Intersections of a polyhedral surface with parallel planes using characteristics points (특성점의 성질을 이용한 다면체 곡면과 평행한 평면들과의 교선)

  • 전차수;김영일
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.603-616
    • /
    • 1995
  • Presented in this paper is an algorithm to obtain the intersections of a polyhedral surface composed of triangle facets with a series of parallel planes for extracting machining information from the surface. The change of the topology of the intersection curves is caused by characteristic points of the surface when sectioning the surface with parallel planes. The characteristic points are internal maximum, internal minimum, internal saddle, boundary maximum, boundary minimum, boundary max-saddle, and boundary min-saddle points. The starting points of the intersects are found efficiently and robustly using the characteristic points. The characteristic points as well as the intersection contours can be used to evaluate the machining information for process planning, and to generate NC tool path in CAD/CAM system.

  • PDF

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

An Algorithm for Single Machine Scheduling Using The Control of Machining Speed (단일공정에서의 가공속도 조절에 의한 생산일정계획)

  • 박찬웅
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study presents an single machine scheduling algorithm minimize lateness of product by controlling machining speed. Generally, production scheduling uses the information of process planning. But the production scheduling algorithm has not considered the control of machining speed in its procedures. Therefore, the purpose of this study is to consider the machining speed in production scheduling algorithm for efficient production scheduling. Machining time and machining cost required to manufacture a piece of a product are expressed as a unimodal convex function with respect to machining speed, so it has minimal point at minimum time speed or the minimum cost speed. Therefore, because of considering the machining cost, the control of machining speed for the algorithm is executed between minimum speed and maximum speed. An example is demonstrated to explain the algorithm.

  • PDF

Evaluation of gear reduction ratio for a 1.6 kW multi-purpose agricultural electric vehicle platform based on the workload data

  • Mohammod Ali;Md Rejaul Karim;Habineza Eliezel;Md Ashrafuzzaman Gulandaz;Md Razob Ali;Hyun-Seok Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.133-146
    • /
    • 2024
  • Selection of gear reduction ratio is essential for machine design to ensure suitable power and speed during agricultural operations. The goal of the study was to evaluate the gear reduction ratio for a 1.6 kW four-wheel-drive (4WD) multi-purpose agricultural electric vehicle platform using workload data under different off-road conditions. A data acquisition system was fabricated to collect workload (torque) of the vehicle acting on the gear shaft. Field tests were performed under three driving surfaces (asphalt, concrete, and grassland), payload operations (981, 2,942, and 4,903 N), and slope conditions (0 - 4°, 4 - 8°, and 8 - 12°), respectively. Commercial speed reduction gear phases were attached to the input shaft of the vehicle powertrain. The maximum required torque was recorded as 37.5 Nm at a 4,903 N load with 8 - 12° slope levels, and the minimum torque was 12.32 Nm at 0 - 4° slope levels with a 981 Nm load for a 4 km/h speed on asphalt, concrete, and grassland roads. Based on the operating load condition and motor torque and rotational speed (TN) curve, the minimum and maximum gear reduction ratios were chosen as 1 : 50 and 1 : 64, respectively. The selected motor satisfied power requirements by meeting all working torque criteria with the gear reduction ratios. The chosen motor with a gear reduction ratio of 1 : 50 was suitable to fit with the motor T-N curve, and produced the maximum speeds and loads needed for driving and off-road activities. The findings of the study would assist in choosing a suitable gear reduction ratio for electric vehicle multi-purpose field operations.

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

High Resolution Linear Graphs : Graphical Aids for Designing Off-Line Process Control)

  • Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-88
    • /
    • 2001
  • Designing high quality products and processes at a low cost is central technological and economic challenge to the engineer. The combination of engineering concepts and statistical implementations offered by Taguchi\`s off-line design technique has proven t be invaluable. By examining some deficiencies in designs from the Taguchi\`s highly fractional, orthogonal main effect plan based on orthogonal arrays, alternative method is proposed. The maximum resolution or the minimum aberration criterion is commonly used for selecting 2$^{n-m}$ fractional designs. We present new high resolution (low aberration) linear graphs to simplify the complexity of selecting designs with desirable statistical properties. The new linear graphs approach shows a substantial improvement over Taguchi\`s linear graphs and other related graphical methods for planning experiment. The new set of linear graphs will allow the experimenter to maintain the simple approach suggested by Taguchi while obtaining the best statistical properties of the resulting design such as minimum aberration as a by-product without dependency on complicated computational algorithm or additional statistical training.g.

  • PDF