• Title/Summary/Keyword: maximum adhesion

Search Result 233, Processing Time 0.026 seconds

Improvement of Re-adhesion Control Performance on Railway Electric Vehicle using Estimation of Maximum Adhesive Effort (최대점착력 추정을 이용한 철도차량의 재점착 제어 성능 개선)

  • Kim, U-Seok;Kim, Yong-Seok;Gang, Jun-Gu;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • In this paper, an improved re-adhesion control scheme is proposed for 1C4M railway traction system. It is well known that the coefficient of adhesion between wheel and rail has a maximum value at a certain slip velocity. In the proposed scheme, adhesive effort is estimated by a full-order observer and the driving torque of motor is controlled to get maximum adhesive effort. The-adhesion control simulator is designed to verify the proposed re-adhesion control algorithm. The simulation results and experimental results are presented.

  • PDF

A Study on the Adhesion Control using the Estimated Adhesion for Improving Traction Performance (견인능력 향상을 위한 추정점착력을 이용한 점착제어기법에 관한 연구)

  • Seo, Gwang-Deok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.709-714
    • /
    • 1999
  • This paper is focused on the adhesion control method to improve traction efficiency using the estimated adhesion for railway propulsion system. Recently, the wheel slippery is frequently occurred due to light weight of train and power increasement of traction parts. This phenomenon occurs a traction loss and a poor ride comport. Therefore, the adhesion control which is able to prevent the slippery and to control the traction on a maximum adhesion is absolutely needed. This paper introduces typical methods for adhesion control and proposes two novel adhesion methods using the estimated adhesion.

  • PDF

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Improvement of Re-adhesion Control Performance Using Estimation of Maximum Adhesive Force (최대점착력 추정을 이용한 철도차량의 재정착제어 성능 개선)

  • Kim, Woo-Seok;Kim, Yong-Seok;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.163-167
    • /
    • 1998
  • In this paper an improved re-adhesion control scheme is proposed for IC4M(1-Controller 4-Motors) traction system. It is well known that the coefficient of adhesion between wheel and rail has a maximum value at a certain slip velocity. In the proposed scheme, maximum adhesive force is estimated by an observer and the driving torque of motor is controlled to set maximum adhesive force. The simulation results are presented.

  • PDF

Study on Maximum Adhesive Effort Estimation using Disturbance Observer (외란관측기를 이용한 최대 점착력 추정에 관한 연구)

  • Jun, K.Y.;Lee, S.H.;Oh, B.H.;Kang, S.U.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1120-1122
    • /
    • 2001
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Effect of Surface Modification of Polyester Cord on the Adhesion of SBR/Polyester (폴리에스터 코드의 표면개질 조건이 SBR/폴리에스터의 접착에 미치는 영향)

  • Park, Y.S.;Chung, K.H.
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.75-85
    • /
    • 2007
  • In this study, the new adhesion system was studied to improve the adhesion strength between polyester cord and rubber matrix. In order to enhance the adhesion strength through polyester cord's surface treatment, the NaOH solution was used. The NaOH solution concentrations of 0.03, 0.05, 0.1, 0.2, 0.5, 1 and 5 wt.% were used in surface modifying the polyester cord. The optimum condition showing the maximum adhesion strength of polyester cord with SBR compound containing bonding agent was at NaOH concentration of 0.05 wt.% with treatment time of 10 minutes. When the NaOH solution concentration was above 1 wt.%, the polyester cord due to the excess surface modification was damaged, and resulted in breakage during the adhesion test. Also, the adhesion strength between polyester and SBR could be improved by coating the polyester cord with triallylcyanurate(TC) adhesive. The drying condition of polyester cord coated with TC attributed to the adhesion strength. The maximum adhesion strength was obtained by using the polyester cord dried at $220^{\circ}C$ rather than dried at room temperature.

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control (부하토크외란관측기와 속도센서리스 벡터제어를 이용한 철도모의장치의 Anti-Slip 제어)

  • Lee S. C.;Kwon J. D.;Kim Y. K.;Jho J. M.;Jeon K. Y.;Lee S. H.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.891-894
    • /
    • 2004
  • This paper estimate coefficient of adhesion through speed sensor-less vector control and load torque disturbance observer used for maximum tractive force control. And also proposes anti-slip control algorithm, which controls torque force of motor in order to keep the estimated adhesion force in maximum adhesion by controlling PI torque with the differential value of estimated adhesion force coefficient.

  • PDF

Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films (Cu-Cr 합금박막의 필 접착력과 소성변형)

  • 이태곤;임준홍;김영호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Re-adhesion Control for Wheeled Robot Using Fuzzy Logic (퍼지 제어기를 이용한 이동 로봇의 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2423-2425
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient(AFC) according to slip velocity. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the re-adhesion control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. fuzzy logic controller(FLC) is petty useful with slip through that compare fuzzy with PI control for the controller performance. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

Anti-Slip Control for Wheeled Robot Based on Disturbance Observer (외란 관측기를 이용한 이동 로봇의 슬립 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Whan;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.50-52
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient according to slip velocity. In oder to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the anti-slip control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF