• Title/Summary/Keyword: maximal weighted$L^1$-space

Search Result 2, Processing Time 0.016 seconds

FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES

  • Rakotondratsimba, Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.855-890
    • /
    • 1999
  • Necessary and sufficient conditions on the weight functions u(.) and $\upsilon$(.) are derived in order that the fractional maximal operator $M\alpha,\;0\;\leq\;\alpha\;<\;1$, is bounded from the weighted amalgam space $\ell^s(L^p(\mathbb{R},\upsilon(x)dx)$ into $\ell^r(L^q(\mathbb{R},u(x)dx)$ whenever $1\leq s\leq r<\infty\;and\;1. The boundedness problem for the fractional intergral operator $I_{\alpha},0<\alpha\leq1$, is also studied.

  • PDF

WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Kim, Yong-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1029-1036
    • /
    • 1997
  • Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

  • PDF