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WEAK TYPE L!(R")-ESTIMATE FOR
CERTAIN MAXIMAL OPERATORS

YONG-CHEOL KiMm

ABSTRACT. Let {A;}:~0 be a dilation group given by A; = exp(—P
log t), where P is a real n x n matrix whose eigenvalues has strictly
positive real part. Let v be the trace of P and P* denote the
adjoint of P. Suppose that K is a function defined on R™ such
that |K(z)| < R(|z|g) for a bounded and decreasing function £(t)
on Ry satisfying o] |g € UesoL((1 + |x|)°dx) where Q@ =
fooo exp(—tP*) exp(—tP)dt and the norm |- |g stands for |z|g =
V{(Qz,z),z € R*. For f € L}(R"), define Mf(z) = sup; g [K¢ *
f(z)| where K¢(x) = t“"l(i(AH‘/t:c). Then we show that 901 is a
bounded operator of L1(R") into L% (R™).

1. Introduction

Let P be a real n x n matrix with eigenvalues \;, Re(\;) > 0,
and let v be the trace of P and P* denote the adjoint of P. Then we
consider the associated dilation group defined by A; = exp(Plogt),t >
0. Then A; = exp(P* logt). We see that in general |A}z| is not strictly
increasing in terms of ¢. However, one has the following fact ( see [6]
); there exists a positive definite and symmetric real matrix ) so that
|Afz|g = /(QAfz, Afz) is strictly increasing in ¢, where the norm
| - |o is defined by |z|o = /(Qx,z) for x € R™: in fact, it turns out
that

Q= /00 exp(—tP")exp(—tP) dt.
0
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Observe that, since ) is positive definite and symmetric, this norm
satisfies the triangle inequality and we have that for z € R™

(1.1) o lz| < lzlg < V@l =]

where ||Q|| denotes the operator norm of Q and g, > 0 is the smallest
eigenvalue of the orthogonal matrix which makes () diagonalized.

For a notation, we write f € LV°°(R"™) { which is called weak-L!
space ) if

[RAIpARS ?iggS!{x € R |f(z)] > s}| < oc.

For simplicity, we denote the weak-L! space by 11:°°. We introduce
weighted integrable functions with a weight w,(z) = (1 - |z])¢,¢ > 0.
For € > 0, denote by L'(w,) the space of all measurable functions I
defined on R” for which

[ 5@z ar < oo
Rn

Then we note that L'(w,) decreases in terms of inclusion as £ > 0 in-
creases. Even though we take the union on ¢ > 0 of such spaces L' (w, ),
the space UesoL'(we) is still a proper subspace of L!(R™) because a
function

1

1) = g A ey Yo @

where B(0;1) denotes the unit ball with center 0 € R™ belongs to
LY(R™) but not to U, L*(R™). In what follows, we denote by L (we) =
UesoL!(we), which we call the maximal weighted I,!-space. Our main
result is to obtain the weak type L' (R™)-estimate for certain maximal
operator to be defined in the following theorem.

THEOREM 1.1. Suppose that K be a function defined on R™ such
that

IK(2)| < R(|zl)
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where R(t) is a bounded and decreasing function defined on R, and
Rol-|g € L'(w.). For f € L*(R™), define

Mf(z) = sup K » f(z)],

t>0

where Ky(z) = t7VK(A,,, ) for t > 0. Then M is a bounded operator
of L'(R™) into L*°°(R™); that is. there is a constant C = C(n) such
that for any f € L*(R"),

1M fllpre < Clflze-

REMARK. We see that the maximal operator associated with isotropic
dilation on the kernel which is in L!(R™) is dominated by the Hardy-
Littlewood maximal operator. However, this is no longer true for
anisotropic cases. If 1 < p < oo and the kernel has a quasiradial majo-
rant that is bounded, decreasing, and integrable, then it is well-known
( see [4] ) that the maximal operator 9 is bounded on LP(R™).

2. Preliminary estimates

1

Let HE(CE) = W

for € > 0, and for f € L'(R") define
M. f(z) = sup [H, * f(z)]
t>0

where Hy(z) = t7"H*(A],, z) for ¢ > 0. Then we need the following
elementary lemma in order to prove Lemma 2.2 helow.

LEMMA 2.1. Iffio||g € L} (w.) fore > 0, then > oo | 2F(nTelg(2k—1)
< 00.

Proof. Tt easily follows from (1.1) and simple computation. O

LEMMA 2.2. If Ro|-|g € L'(we) for ¢ > 0, then there exists a
constant C = C(g) > 0 such that M f(z) < C M, f(z) for any z € R™.
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Proof. For k € Z, set Ay = {y € R*|2¢1 < lylo < 2%} and
U ={y € R"||y|lg <1}. By simple computation, we have that

Cx f(2)] <D (Rl lg)xa.] * If](z)

kCZ

<[(Ro - lohad *1flw + 3[R o - lo)xa * /1)
k=1

< Cxux|fl(z) + CY R )xa, * |/](z)
k=1

- n1+e - 1
< Cxux|fl(@) + C Y MO/ oy g, * [ fl(2)
k=1 -

where xp denotes the characteristic function on a set £. Note that
there is a constant C' > 0 such that for any k =1,2,3,-- -,

1 (z) < C
 a(2) L
pk(ne) XANE) = T yate

because |z|q ~ 2% for z € A;. Thus it follows from Lemma 2.1 that
for any z € R™,
Kx f(2)] < CIH = f(2)].

Hence we conclude that M f(z) < C M, f(z) for any r € R™. O

3. Weak type L!(R")-estimate

In this section, we introduce a Vitali family [5] and the result of
Stein and Weiss [7] on adding weak type functions.

Let {U|s > 0} be a family of open subsets of R™ whose closure
is compact. Then we say that {{/|s > 0} is a Vitali family with
constant A > 0, if the followings are satisfied; (i) U, C U, for s < &'
and Nysolds = {0}, (i) U — Us| < AU, for all s > 0, and (iii)
limy o0 |Us, | = |Us| when limg_, o sx = s.

LEMMA 3.1. Suppose that {h;} is a sequence of nonnegative func-
tions on a measure space for which

1Rl < A
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where A > 0 is a constant. Let {c,;} be a sequence of positive numbers
with 3. a; = 1. Then we have that

1D ajhillpn« <24(N +2)
J
where N =3 a; log(1/a;).
LEMMA 3.2. Let G be a function defined on R™ such that (1 + |-
|0)?G € L>®(R™) for v > n. For f € L*(R™), define

Mf(z) = sup G * f(z)]

where Gi(z) = t "G(A] ), x) for t > 0. Then there is a constant C =
C(n) > 0 such that for any f € L'(R"™),

[MSfllpre < CllSllpr

Proof. Without loss of generality, we may assume that

G(z)| < C'&(|z|q)

where B(r) = = for 7 > 0 and v > n. For k € Z, let AF =

1
(1+7)
{y e R 2" <|A] ,ylo <2}, andfor k=1,2,3,- -, let Uf = {y €
R™| |A’1‘/t ylo < 2*}. From simple computation, we have that

G f(@)] <) (1Ge]xax) * | fI(2)
kEZ

< 3 (G ) *1f1(=)
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where

Mf (@) = sup s + 1))

Then it is not hard to show that for each k, {¢4f|t >~ 0} is a Vitali family
with constant 2"; for, lim;_, lAI/t ylo = 0and lim,_, o ]AI/t Ylo = 00
A}y is continuous in t and y, UF — UF C 2U¥, and |UF| = w,2kn¢>,
where w, = [{z € R"||z|g < 1}|. Thus by the maximal theorem [5]
on a Vitali family, we have that for each k > 1,

[Mifllpre < 27| fll 1.

Set Bx = 2*"®(2%-1) and set 8 = S 2M@ (26 ) < oo, If ap =
Br/B, then > 7 ax = 1. Then by Lemma 3.1, we get that

1D axMiflline < 27K +2)] £,
k=1
where K = 5 77 oy log(1/ai) < n0. Also we have that

wPIgt*f I<ﬁzakMkf ().

k=1

Therefore, this implies that M is bounded from L}(R") to L1 (R™).0J

Proof of Theorem 1.1. Assume that fo|-|g € L'(w,), and let &g > 0
be the supremum of numbers € > 0 so that fo|-|g € L'(w,). Applying
Lemma 3.2 to the maximal operator M., that we defined in Section
2, it follows that M., is a bounded operator of L'{R") into L1:*°(R™).
Therefore, by Lemma 2.2, we conclude that 9 is a bounded operator
of LY(R™) into L1 (R™). O

4. Application

In this section, we give an application of Theorera 1.1 to the maximal
Bochner-Riesz operator. In order to do that, we first of all introduce
quasi-homogeneous distance functions defined on R™.
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We say that a function ¢ € C*°(R™\{0}) is an A,-homogeneous
distance function defined on R", if ¢(§) > 0 for € € R"\{0}, and
o(A€) = to(§) for t > 0 and € € R™. For f e LY(R"), let f(¢&) =
il e~ =€) f(z)dz denote the Fourier transform. We consider quasiradial
Bochner-Riesz means of index ¢ >> 0 defined by

. 1 il ] 0o F
B @) = g [ 090 el ) de

and the associated maximal operator

M f(z) = sup |BS, f(z)].
t>0

In what follows, denote by X, = {{ € R"|p(§) = 1} the unit sphere
with respect to the distance function p.

COROLLARY 4.1. Suppose that the Gaussian curvature of the unit
sphere Y., does not vanish. If § > (n — 1)/2, then there is a constant
C = C(n) > 0 such that for any [ € L'(R"),

MGl e < Cliflle-

REMARK. For another proof, the reader can refer to the result of
Dappa and Trebels [1]. If the sphere ¥, satisfies a finite type condition,
then we also have sharp weak type (1,1)-estimate for the maximal
Bochner-Riesz operator ( see [2] and [3] for related results ).

Proof. It easily follows from Theorem 1.1 and the decay estimate of
the Bochner-Riesz kernel by using the stationary phase method. Ol

In order to apply the Marcinkiewicz interpolation theorem, we use
the standard linearization technique of the maximal Bochner-Riesz op-
erator. It thus suffices to consider the analytic family of linear opera-
tors given by

s 90— o) i) de

where z — t(z) is an arbitrary measurable functicn defined on R™ with
values in R.,. Combining this with Corollary 4.1, we obtain the LP-
estimate for Sm‘; near p = 1. By the complex interpolation method, we
interpolate this estimate with the L?-estimate for ‘IR‘; on § > 0. Then
we easily get the following corollary.
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COROLLARY 4.2. Suppose that the unit sphere Yo has nonvanishing
1 1
Gaussian curvature. If § > (n—1) <— - 5) and 1 < p < 2, then there
P
is a constant C = C(n,p) > 0 such that for any f = LP(R"™),

|omg

e <C

f

Le-
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