WEAK TYPE $L^1(\mathbb{R}^n)$ -ESTIMATE FOR CERTAIN MAXIMAL OPERATORS

YONG-CHEOL KIM

ABSTRACT. Let $\{A_t\}_{t>0}$ be a dilation group given by $A_t = \exp(-P \log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let ν be the trace of P and P^* denote the adjoint of P. Suppose that \mathcal{K} is a function defined on \mathbb{R}^n such that $|\mathcal{K}(x)| \leq \Re(|x|_Q)$ for a bounded and decreasing function $\Re(t)$ on \mathbb{R}_+ satisfying $\Re \circ |\cdot|_Q \in \cup_{\varepsilon>0} L^1((1+|x|)^\varepsilon dx)$ where $Q = \int_0^\infty \exp(-tP^*) \exp(-tP) dt$ and the norm $|\cdot|_Q$ stands for $|x|_Q = \sqrt{\langle Qx,x\rangle}, x \in \mathbb{R}^n$. For $f \in L^1(\mathbb{R}^n)$, define $\mathfrak{M}f(x) = \sup_{t>0} |\mathcal{K}_t * f(x)|$ where $\mathcal{K}_t(x) = t^{-\nu}\mathcal{K}(A_{t/t}^*x)$. Then we show that \mathfrak{M} is a bounded operator of $L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

1. Introduction

Let P be a real $n \times n$ matrix with eigenvalues λ_i , $Re(\lambda_i) > 0$, and let ν be the trace of P and P^* denote the adjoint of P. Then we consider the associated dilation group defined by $A_t = \exp(P \log t), t > 0$. Then $A_t^* = \exp(P^* \log t)$. We see that in general $|A_t^*x|$ is not strictly increasing in terms of t. However, one has the following fact (see [6]); there exists a positive definite and symmetric real matrix Q so that $|A_t^*x|_Q = \sqrt{\langle QA_t^*x, A_t^*x\rangle}$ is strictly increasing in t, where the norm $|\cdot|_Q$ is defined by $|x|_Q = \sqrt{\langle Qx, x\rangle}$ for $x \in \mathbb{R}^n$; in fact, it turns out that

$$Q = \int_0^\infty \exp(-tP^*)\exp(-tP) dt.$$

Received August 13, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 42B25, 42B15.

Key words and phrases: maximal operator, weak type $L^1(\mathbb{R}^n)$ -estimate, quasiradial majorant, maximal weighted L^1 -space, maximal Bochner-Riesz operator.

The author was supported in part by Korea Research Foundation and GARC.

Observe that, since Q is positive definite and symmetric, this norm satisfies the triangle inequality and we have that for $x \in \mathbb{R}^n$

(1.1)
$$\mu_0 |x| \le |x|_Q \le \sqrt{\|Q\|} |x|$$

where ||Q|| denotes the operator norm of Q and $\mu_{\mathbb{C}} > 0$ is the smallest eigenvalue of the orthogonal matrix which makes Q diagonalized.

For a notation, we write $f \in L^{1,\infty}(\mathbb{R}^n)$ (which is called weak- L^1 space) if

$$||f||_{L^{1,\infty}} = \sup_{s>0} s|\{x \in \mathbb{R}^n | |f(x)| > s\}| < \infty.$$

For simplicity, we denote the weak- L^1 space by $L^{1,\infty}$. We introduce weighted integrable functions with a weight $\omega_{\varepsilon}(x) = (1+|x|)^{\varepsilon}, \varepsilon > 0$. For $\varepsilon > 0$, denote by $L^1(\omega_{\varepsilon})$ the space of all measurable functions f defined on \mathbb{R}^n for which

$$\int_{\mathbb{R}^n} |f(x)|\,\omega_\varepsilon(x)\,dx < \infty.$$

Then we note that $L^1(\omega_{\varepsilon})$ decreases in terms of inclusion as $\varepsilon > 0$ increases. Even though we take the union on $\varepsilon > 0$ of such spaces $L^1(\omega_{\varepsilon})$, the space $\cup_{\varepsilon > 0} L^1(\omega_{\varepsilon})$ is still a proper subspace of $L^1(\mathbb{R}^n)$ because a function

$$f(x) = \frac{1}{[\log(1+|x|)]^{3/2}(1+|x|)^n} \chi_{\mathbb{R}^n \backslash \mathcal{E}(0;1)}(x)$$

where $\mathcal{B}(0;1)$ denotes the unit ball with center $0 \in \mathbb{R}^n$ belongs to $L^1(\mathbb{R}^n)$ but not to $\bigcup_{\varepsilon>0} L^1(\mathbb{R}^n)$. In what follows, we denote by $L^1(\omega_*) = \bigcup_{\varepsilon>0} L^1(\omega_\varepsilon)$, which we call the maximal weighted L^1 -space. Our main result is to obtain the weak type $L^1(\mathbb{R}^n)$ -estimate for certain maximal operator to be defined in the following theorem.

THEOREM 1.1. Suppose that K be a function defined on \mathbb{R}^n such that

$$|\mathcal{K}(x)| \leq \mathfrak{K}(|x|_O)$$

where $\mathfrak{K}(t)$ is a bounded and decreasing function defined on \mathbb{R}_+ and $\mathfrak{K} \circ |\cdot|_Q \in L^1(\omega_*)$. For $f \in L^1(\mathbb{R}^n)$, define

$$\mathfrak{M}f(x) = \sup_{t>0} |\mathcal{K}_t * f(x)|,$$

where $K_t(x) = t^{-\nu}K(A_{1/t}x)$ for t > 0. Then \mathfrak{M} is a bounded operator of $L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$; that is, there is a constant C = C(n) such that for any $f \in L^1(\mathbb{R}^n)$,

$$\|\mathfrak{M}f\|_{L^{1,\infty}} \le C \|f\|_{L^1}.$$

REMARK. We see that the maximal operator associated with isotropic dilation on the kernel which is in $L^1(\mathbb{R}^n)$ is dominated by the Hardy-Littlewood maximal operator. However, this is no longer true for anisotropic cases. If $1 and the kernel has a quasiradial majorant that is bounded, decreasing, and integrable, then it is well-known (see [4]) that the maximal operator <math>\mathfrak{M}$ is bounded on $L^p(\mathbb{R}^n)$.

2. Preliminary estimates

Let $\mathcal{H}^{\varepsilon}(x) = \frac{1}{(1+|x|_Q)^{n+\varepsilon}}$ for $\varepsilon > 0$, and for $f \in L^1(\mathbb{R}^n)$ define

$$\mathcal{M}_{\varepsilon}f(x) = \sup_{t>0} |\mathcal{H}_t * f(x)|$$

where $\mathcal{H}_t(x) = t^{-\nu} \mathcal{H}^{\varepsilon}(A_{1/t}^* x)$ for t > 0. Then we need the following elementary lemma in order to prove Lemma 2.2 below.

LEMMA 2.1. If $\Re |\cdot|_Q \in L^1(\omega_\varepsilon)$ for $\varepsilon > 0$, then $\sum_{k=1}^\infty 2^{k(n+\varepsilon)} \Re (2^{k-1}) < \infty$.

Proof. It easily follows from (1.1) and simple computation.

LEMMA 2.2. If $\Re \circ |\cdot|_Q \in L^1(\omega_{\varepsilon})$ for $\varepsilon > 0$, then there exists a constant $C = C(\varepsilon) > 0$ such that $\mathfrak{M}f(x) \leq C \mathcal{M}_{\varepsilon} f(x)$ for any $x \in \mathbb{R}^n$.

Proof. For $k \in \mathbb{Z}$, set $\mathcal{A}_k = \{y \in \mathbb{R}^n | 2^{k-1} \leq |y|_Q \leq 2^k\}$ and $\mathcal{U} = \{y \in \mathbb{R}^n | |y|_Q \leq 1\}$. By simple computation, we have that

$$\begin{split} |\mathcal{K}*f(x)| &\leq \sum_{k \in \mathbb{Z}} [(\mathfrak{K} \circ |\cdot|_Q)\chi_{\mathcal{A}_k}] * |f|(x) \\ &\leq [(\mathfrak{K} \circ |\cdot|_Q)\chi_{\mathcal{U}}] * |f|(x) + \sum_{k=1}^{\infty} [(\mathfrak{K} \circ |\cdot|_Q)\chi_{\mathcal{A}_k} * |f|(x) \\ &\leq C \chi_{\mathcal{U}} * |f|(x) + C \sum_{k=1}^{\infty} \mathfrak{K}(2^{k-1})\chi_{\mathcal{A}_k} * |f|(x) \\ &\leq C \chi_{\mathcal{U}} * |f|(x) + C \sum_{k=1}^{\infty} 2^{k(n+\varepsilon)} \mathfrak{K}(2^{k-1}) \frac{1}{2^{k(n+\varepsilon)}} \chi_{\mathcal{A}_k} * |f|(x) \end{split}$$

where χ_E denotes the characteristic function on a set E. Note that there is a constant C>0 such that for any $k=1,2,3,\cdots$,

$$rac{1}{2^{k(n+arepsilon)}}\chi_{\mathcal{A}_k}(x) \leq rac{C}{(1+|x|_Q)^{n+arepsilon}}$$

because $|x|_Q \sim 2^k$ for $x \in \mathcal{A}_k$. Thus it follows from Lemma 2.1 that for any $x \in \mathbb{R}^n$,

$$|\mathcal{K} * f(x)| \le C |\mathcal{H}^{\varepsilon} * f(x)|.$$

Hence we conclude that $\mathfrak{M}f(x) \leq C \mathcal{M}_{\varepsilon}f(x)$ for any $x \in \mathbb{R}^n$.

3. Weak type $L^1(\mathbb{R}^n)$ -estimate

In this section, we introduce a Vitali family [5] and the result of Stein and Weiss [7] on adding weak type functions.

Let $\{\mathcal{U}_s|s>0\}$ be a family of open subsets of \mathbb{R}^n whose closure is compact. Then we say that $\{\mathcal{U}_s|s>0\}$ is a Vitali family with constant A>0, if the followings are satisfied; (i) $\mathcal{U}_s\subset\mathcal{U}_{s'}$ for $s\leq s'$ and $\bigcap_{s>0}\mathcal{U}_s=\{0\}$, (ii) $|\mathcal{U}_s-\mathcal{U}_s|\leq A|\mathcal{U}_s|$ for all s>0, and (iii) $\lim_{k\to\infty}|\mathcal{U}_{s_k}|=|\mathcal{U}_s|$ when $\lim_{k\to\infty}s_k=s$.

LEMMA 3.1. Suppose that $\{h_j\}$ is a sequence of nonnegative functions on a measure space for which

$$||h_i||_{L^{1,\infty}} \leq A$$

where A > 0 is a constant. Let $\{\alpha_j\}$ be a sequence of positive numbers with $\sum_j \alpha_j = 1$. Then we have that

$$\|\sum_j \alpha_j h_j\|_{L^{1,\infty}} \leq 2A(N+2)$$

where $N = \sum_{j} \alpha_{j} \log(1/\alpha_{j})$.

LEMMA 3.2. Let \mathcal{G} be a function defined on \mathbb{R}^n such that $(1+|\cdot|_{\mathcal{Q}})^{\gamma}\mathcal{G}\in L^{\infty}(\mathbb{R}^n)$ for $\gamma>n$. For $f\in L^1(\mathbb{R}^n)$, define

$$\mathcal{M}f(x) = \sup_{t>0} |\mathcal{G}_t * f(x)|$$

where $\mathcal{G}_t(x) = t^{-\nu}\mathcal{G}(A_{1/t}^* x)$ for t > 0. Then there is a constant C = C(n) > 0 such that for any $f \in L^1(\mathbb{R}^n)$,

$$\|\mathcal{M}f\|_{L^{1,\infty}} \leq C\|f\|_{L^1}.$$

Proof. Without loss of generality, we may assume that

$$|\mathcal{G}(x)| \le C \,\mathfrak{G}(|x|_Q)$$

where $\mathfrak{G}(r) = \frac{1}{(1+r)^{\gamma}}$ for r > 0 and $\gamma > n$. For $k \in \mathbb{Z}$, let $\mathcal{A}_t^k = \{y \in \mathbb{R}^n | 2^{k-1} \le |A_{1/t}^* y|_Q \le 2^k\}$, and for $k = 1, 2, 3, \dots$, let $\mathcal{U}_t^k = \{y \in \mathbb{R}^n | |A_{1/t}^* y|_Q \le 2^k\}$. From simple computation, we have that

$$egin{aligned} |\mathcal{G}_t st f(x)| &\leq \sum_{k \in \mathbb{Z}} (|\mathcal{G}_t| \chi_{\mathcal{A}_t^k}) st |f|(x) \ &\leq \sum_{k=1}^\infty (|\mathcal{G}_t| \chi_{\mathcal{U}_t^k}) st |f|(x) \ &\leq \sum_{k=1}^\infty rac{1}{t^
u} \mathfrak{G}(2^{k-1}) \chi_{\mathcal{U}_t^k} st |f|(x) \ &= \sum_{k=1}^\infty 2^{kn} \mathfrak{G}(2^{k-1}) rac{1}{2^{kn} t^
u} \chi_{\mathcal{U}_t^k} st |f|(x) \ &\leq \sum_{k=1}^\infty 2^{kn} \mathfrak{G}(2^{k-1}) \mathcal{M}_k f(x), \end{aligned}$$

where

$$\mathcal{M}_k f(x) = \sup_{t>0} \frac{1}{2^{kn} t^{\nu}} \chi_{\mathcal{U}_t^k} * |f|(x).$$

Then it is not hard to show that for each k, $\{\mathcal{U}_t^k|t>0\}$ is a Vitali family with constant 2^n ; for, $\lim_{t\to\infty}|A_{1/t}^*y|_Q=0$ and $\lim_{t\to\infty}|A_{1/t}^*y|_Q=\infty$, A_t^*y is continuous in t and y, $\mathcal{U}_t^k-\mathcal{U}_t^k\subset 2\mathcal{U}_t^k$, and $|\mathcal{U}_t^k|=\omega_n 2^{kn}t^{\nu}$, where $\omega_n=|\{x\in\mathbb{R}^n|\,|x|_Q\leq 1\}|$. Thus by the maximal theorem [5] on a Vitali family, we have that for each $k\geq 1$,

$$\|\mathcal{M}_k f\|_{L^{1,\infty}} \le 2^n \|f\|_{L^1}.$$

Set $\beta_k = 2^{kn}\mathfrak{G}(2^{k-1})$ and set $\beta = \sum_{k=1}^{\infty} 2^{kn}\mathfrak{G}(2^{k-1}) < \infty$. If $\alpha_k = \beta_k/\beta$, then $\sum_{k=1}^{\infty} \alpha_k = 1$. Then by Lemma 3.1, we get that

$$\|\sum_{k=1}^{\infty} \alpha_k \mathcal{M}_k f\|_{L^{1,\infty}} \le 2^{n+1} (K+2) \|f\|_{L^1},$$

where $K = \sum_{k=1}^{\infty} \alpha_k \log(1/\alpha_k) < \infty$. Also we have that

$$\sup_{t>0} |\mathcal{G}_t * f(x)| \le \beta \sum_{k=1}^{\infty} \alpha_k \mathcal{M}_k f(x).$$

Therefore, this implies that \mathcal{M} is bounded from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$.

Proof of Theorem 1.1. Assume that $\mathfrak{K} \circ |\cdot|_Q \in L^1(\omega_*)$, and let $\varepsilon_0 > 0$ be the supremum of numbers $\varepsilon > 0$ so that $\mathfrak{K} \circ |\cdot|_Q \in L^1(\omega_{\varepsilon})$. Applying Lemma 3.2 to the maximal operator $\mathcal{M}_{\varepsilon_0}$ that we defined in Section 2, it follows that $\mathcal{M}_{\varepsilon_0}$ is a bounded operator of $L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$. Therefore, by Lemma 2.2, we conclude that \mathfrak{M} is a bounded operator of $L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

4. Application

In this section, we give an application of Theorem 1.1 to the maximal Bochner-Riesz operator. In order to do that, we first of all introduce quasi-homogeneous distance functions defined on \mathbb{R}^n .

We say that a function $\varrho \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ is an A_t -homogeneous distance function defined on \mathbb{R}^n , if $\varrho(\xi) > 0$ for $\xi \in \mathbb{R}^n \setminus \{0\}$, and $\varrho(A_t\xi) = t\varrho(\xi)$ for t > 0 and $\xi \in \mathbb{R}^n$. For $f \in L^1(\mathbb{R}^n)$, let $\hat{f}(\xi) = \int e^{-i\langle x,\xi\rangle} f(x) dx$ denote the Fourier transform. We consider quasiradial Bochner-Riesz means of index $\delta > 0$ defined by

$$\mathcal{B}_{\varrho,t}^{\delta}f(x)=rac{1}{(2\pi)^n}\int_{\mathbb{R}^n}e^{i\langle x,\xi
angle}(1-arrho(\xi)/t)_+^{\delta}\hat{f}(\xi)\,d\xi$$

and the associated maximal operator

$$\mathfrak{M}_{\varrho}^{\delta}f(x) = \sup_{t>0} |\mathcal{B}_{\varrho,t}^{\delta}f(x)|.$$

In what follows, denote by $\Sigma_{\varrho} = \{ \xi \in \mathbb{R}^n | \varrho(\xi) = 1 \}$ the unit sphere with respect to the distance function ϱ .

COROLLARY 4.1. Suppose that the Gaussian curvature of the unit sphere Σ_{ϱ} does not vanish. If $\delta > (n-1)/2$, then there is a constant C = C(n) > 0 such that for any $f \in L^1(\mathbb{R}^n)$,

$$\|\mathfrak{M}_{\varrho}^{\delta}f\|_{L^{1,\infty}} \leq C \, \|f\|_{L^{1}}.$$

REMARK. For another proof, the reader can refer to the result of Dappa and Trebels [1]. If the sphere Σ_{ϱ} satisfies a finite type condition, then we also have sharp weak type (1, 1)-estimate for the maximal Bochner-Riesz operator (see [2] and [3] for related results).

Proof. It easily follows from Theorem 1.1 and the decay estimate of the Bochner-Riesz kernel by using the stationary phase method. \Box

In order to apply the Marcinkiewicz interpolation theorem, we use the standard linearization technique of the maximal Bochner-Riesz operator. It thus suffices to consider the analytic family of linear operators given by

$$z \mapsto \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} (1-\varrho(\xi)/t(x))_-^z \hat{f}(\xi) \, d\xi,$$

where $x \mapsto t(x)$ is an arbitrary measurable function defined on \mathbb{R}^n with values in \mathbb{R}_+ . Combining this with Corollary 4.1, we obtain the L^p -estimate for $\mathfrak{M}_{\varrho}^{\delta}$ near p=1. By the complex interpolation method, we interpolate this estimate with the L^2 -estimate for $\mathfrak{M}_{\varrho}^{\delta}$ on $\delta > 0$. Then we easily get the following corollary.

COROLLARY 4.2. Suppose that the unit sphere Σ_{ϱ} has nonvanishing Gaussian curvature. If $\delta > (n-1)\left(\frac{1}{p} - \frac{1}{2}\right)$ and 1 , then there is a constant <math>C = C(n,p) > 0 such that for any $f \in L^p(\mathbb{R}^n)$,

$$\|\mathfrak{M}_{\rho}^{\delta}f\|_{L^{p}}\leq C\|f\|_{L^{p}}.$$

References

- [1] H. Dappa and W. Trebels, On maximal functions generated by Fourier multiplier, Ark. Mat. 23 (1985), 241-259.
- [2] Y.-C. Kim, Quasiradial Bochner-Riesz means for some nonsmooth distance functions, Indiana Univ. Math. J. (to appear).
- [3] Y. Kim and A. Seeger, A note on pointwise convergence of quasiradial Riesz means, Acta Sci. Math. (Szeged) 62 (1996), 187-199.
- [4] W. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63.
- [5] N. M. Riviére, Singular integrals and multiplier operators, Arkiv för Mat. 9 (1971), 243-278.
- [6] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
- [7] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 34-54.

Department of Mathematics Korea University Seoul 136-701, Korea