• Title/Summary/Keyword: maximal inequality

Search Result 41, Processing Time 0.016 seconds

MAXIMAL INEQUALITIES AND AN APPLICATION UNDER A WEAK DEPENDENCE

  • HWANG, EUNJU;SHIN, DONG WAN
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • We establish maximal moment inequalities of partial sums under ${\psi}$-weak dependence, which has been proposed by Doukhan and Louhichi [P. Doukhan and S. Louhichi, A new weak dependence condition and application to moment inequality, Stochastic Process. Appl. 84 (1999), 313-342], to unify weak dependence such as mixing, association, Gaussian sequences and Bernoulli shifts. As an application of maximal moment inequalities, a functional central limit theorem is developed for linear processes with ${\psi}$-weakly dependent innovations.

WEAK TYPE INEQUALITY FOR POISSON TYPE INTEGRAL OPERATORS

  • Yoo, Yoon-Jae
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.361-370
    • /
    • 1998
  • A condition for a certain maximal operator to be of weak type (p, p) is studied. This operator unifies various maximal operators cited in the literatures.

  • PDF

GENERAL ITERATIVE ALGORITHMS FOR MONOTONE INCLUSION, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.525-552
    • /
    • 2021
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

ORLICZ-TYPE INTEGRAL INEQUALITIES FOR OPERATORS

  • Neugebauer, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.163-176
    • /
    • 2001
  • We examine Orlicz-type integral inequalities for operators and obtain as a corollary a characterization of such inequalities for the Hardy-Littlewood maximal operator extending the well-known L(sup)p-norm inequalities.

  • PDF