• Title/Summary/Keyword: matrix stiffness method

Search Result 571, Processing Time 0.027 seconds

Effectiveness of Isolation-System on Reduction of Seismic Response of Primary and Secondary Structures (주구조물 및 부구조물에 대한 감진장치의 지진응답 감소 효율성)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.9-21
    • /
    • 1992
  • The effectiveness of the isolation system installed at the base of the primary structure and at the support of the substructure mounted on the primary structure is evaluated for reducing of structural responses under different earthquakes in this paper. The structural responses are analyzed to identify its behavior due to the input motion characteristics such as various peak acceleration and frequency content. Three analytical models are used to evaluate the effectiveness of the isolation system in this study as follows: fixed-base primary structure with support-fixed substructure, base-isolated primary structure with support-fixed substructure, and fixed-base primary structure with support-isolated substruciure. A computer code (KBISAP) is used for numerical integration of equation of motion considering the interaction between the primary structure and the secondary structure. The matrix condensation technique and constant average acceleration method are utilized in this program. And also, the effective stiffness of the base-isolator on reducing the structural response are evaluated for various earthquakes through the relationship of the acceleration - displacement.

  • PDF

P-Version Model Based on Hierarchical Axisymmetric Element (계층적 축대칭요소에 의한 P-version모델)

  • Woo, Kwang Sung;Chang, Yong Chai;Jung, Woo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.67-76
    • /
    • 1992
  • A hierarchical formulation based on p-version of the finite element method for linear elastic axisymmetric stress analysis is presented. This is accomplished by introducing additional nodal variables in the element displacement approximation on the basis of integrals of Legendre polynomials. Since the displacement approximation is hierarchical, the resulting element stiffness matrix and equivalent nodal load vectors are hierarchical also. The merits of the propoosed element are as follow: i) improved conditioning, ii) ease of joining finite elements of different polynomial order, and iii) utilizing previous solutions and computation when attempting a refinement. Numerical examples are presented to demonstrate the accuracy, efficiency, modeling convenience, robustness and overall superiority of the present formulation. The results obtained from the present formulation are also compared with those available in the literature as well as with the analytical solutions.

  • PDF

A Geometrically Nonlinear Analysis of the Curved Shell Considering Large Displacements and Large Rotation Increments (대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • This paper presents geometrically nonlinear formulation of shell problems using the three-dimensional curved shell element, which includs large displacements and large rotations. Formulations of the geometrically nonlinear problems can be derived in a variety of ways, but most of them have been obtained by assuming that nodal rotations are small. Hence, the tangent stiffness matrix is derived under the assumptions that rotational increments are infinitesimal and the effect of finite rotational increments have to be considered during the equilibrium iterations. To study the large displacement and large rotation problems, the restrictions are removed and the formulations of the curved shell element including the effect of large rotational increments are developed in this paper. The displacement based finite element method using this improved formulation are applied to the analyses of the geometrically nonlinear behaviors of the single and double curved shells, which are compared with the results by others.

  • PDF

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

The Transmission Line Modeling Method for Finite Element Analysis of Hysteretic Material (TLM법을 이용한 히스테리시스 자성체의 유한요소 해석)

  • Im, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.825-827
    • /
    • 2000
  • 자성체를 포함하는 자기 시스템을 해석하는데 있어 비선형과 히스테리시스(Hysteresis)는 매우 중요한 역할을 한다. 특히 재질의 히스테리시스 특성을 유한요소법(FEM)을 이용하여 계산하기 위해서 많은 방법들이 소개되었다. 단순 반복법이나 Fixed Point Technique(FPT), M-iteration 법. 뉴튼 랍슨 (Newton-Raphson) 법 등이 그 예이다. 이 방법들 중에서 뉴튼 랍슨법은 빠른 수렴 특성으로 가장 많이 사용되고 있다. 하지만 뉴튼-랍슨법을 이용하여 히스테리시스 재질을 해석할 때는 매 반복 계산 때마다 계 계수행렬(System Stiffness matrix)이 변화하기 때문에 요소의 수가 매우 많을 경우 역행렬을 계산하기 위한 시간이 많이 소요되는 단점이 있다. 특히 히스테리시스 해석의 경우에는 주로 time-step법을 이용하여 계산하므로 가장 시간이 많이 소요되는 행렬 계산 시간을 단축함으로써 전체 계산 시간을 크게 줄일 수 있다. 최근 비선형 해석에서 TLM(Transmission Line Modeling)법이 도입되어 비선형 해석 시의 계산 시간을 크게 단축할 수 있게 되었다. 본 논문에서는 비선형 해석에 적용된 TLM법을 히스테리시스 해석에 적용하는 방법을 새로 제안한다. TLM법은 뉴튼-랍슨법과 달리 각 반복 계산 때마다 계수행렬식이 변화하지 않고 단지 구동항만 변하기 때문에 행렬의 LU를 한 번 저장해 두면 forward와 backward substitution만 시행하면 된다. 따라서 요소의 수가 증가할 경우 TLM법을 사용하면 뉴튼-랍슨법에 비해 매우 큰 계산 이득을 얻을 수 있다. 본 논문에서는 TLM법을 히스테리시스에 적용하는 방법을 기술하고 간단한 모델에 이 방법을 적용하여 뉴튼-랍슨법과의 비교를 통해 TLM법의 효용성을 보인다.

  • PDF

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Parallel Nonlinear Analysis of Prestressed Concrete Frame on Cluster System (클러스터 시스템에서 프리스트레스트 콘크리트 프레임의 병렬 비선형해석)

  • 이재석;최규천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.287-298
    • /
    • 2001
  • Analysis of nonlinear behavior of prestressed concrete frame structures on PC is a time-consuming computing job if the problem size increase to a certain degree. Cluster system has emerged as one of promising computing environments due to its good extendibility, portability, and cost-effectiveness, comparing it with high-end work-stations or servers. In this paper, a parallel nonlinear analysis procedure of prestressed concrete frame structure is presented using cluster computing. Cluster system is configured with readily available pentium III class PCs under Win98 or Linux and fast ethernet. Parallel computing algorithms on element-wise processing parts including the calculation of stiffness matrix, element stresses and determination of material states, check of material failure and calculation of unbalanced loads are developed using MPL. Validity of the method is discussed through typical numerical examples. For the case of 4 node system, maximum speedup is 3.15 and 3.74 for Win98 and Linux, respectively. Important issues for the efficient use of cluster computing system based un PCs and ethernet are addressed.

  • PDF

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.