• Title/Summary/Keyword: matrix stiffness method

Search Result 571, Processing Time 0.028 seconds

The evaluation of Elastic modulus of the Foundation by the Plate Loading Test (평판재하시험을 이용한 지반의 탄성계수 측정에 관한 연구)

  • 최장렬;정진환;조현영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.61-68
    • /
    • 1999
  • This paper describes the method of evaluating the elastic modulus of soil medium by using the Circular Plate Loading Test. The elastic foundaton is considered to be the elastic half-space. The stiffness matrix of elastic half space is drived using Boussinesq's analytical soulution. A numerical examples are presented to verify the validity of this procedure. Also, the numerical results are compared with others by the existing study results. The procedure proposed in this theses can be applied to the design of paving concrete resting on the elastic foundation.

  • PDF

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

Parallel Processing of 3D Rigid-Plastic FEM on a Cluster System (클러스터 시스템에서 3차원 강소성 유한요소법의 병렬처리)

  • Choi Young;Seo Yongwie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.122-129
    • /
    • 2005
  • On the cluster system, the parallel code of rigid-plastic FEM has been developed. The cluster system, Simforge, has 15 processors and the total memory is 4.5GBytes. In the developed parallel code, the distributed data of the column-wise partitioned stiffness are stored as the compressed row storage and the diagonal preconditioned conjugate gradient solver is applied. The analysis of block upsetting is performed with the parallel code on Simforge cluster system. In this paper, the analysis results are compared and discussed.

Monitoring of tall slender structures by GPS measurements

  • Chmielewski, Tadeusz;Breuer, Peter;Gorski, Piotr;Konopka, Eduard
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.401-412
    • /
    • 2009
  • A method is applied for the estimation of structural damage of tall slender structures using natural frequency and displacements measurements by GPS. The relationship between the variation in the global stiffness matrix (or in the stiffness of each finite element) and the change in the natural frequencies of the structure is given. In engineering practice the number of frequencies which can be derived by GPS measurement of long-period structures will be equal to one, two or three first natural frequencies. This allows us in initial studies to detect damage with frequency changes based on forward methods in which the measured frequencies are compared with the predicted analytical data. This idea, of health monitoring from possible changes to natural frequencies, or from a statement of excessive displacements is applied to the Stuttgart TV Tower.

Simulation of Leaf Spring for Suspension using FEM (유한요소법을 이용한 현가장치용 겹판스프림의 시뮬레이션)

  • 안오순;이경백;김영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.620-623
    • /
    • 2000
  • The leaf spring is generally used effectively in load supporting because it has tension-diffused function in comparison with other springs. Nowadays the leaf spring is used widely in the suspensions of automobile and trains. The stiffness and the damping characteristics of the leaf spring being essential for the performance of vehicles, the exact evaluation is required. Various approximate formula are normally used for the leaf spring design. however, accuracy and trust are decreased because the contact and frictional characteristics between leaf plates are generally neglected. In this paper, nonlinear stiffness matrix of the leaf spring is solved by contact-element applying FEM for considering the contact and frictional characteristics between leaf plates. The results of proposed FE model are compared with test data.

  • PDF

A Study on the Stress Analysis ofAxi-symetric Body with N on-symetric Load and N on-symetric Given Displacements (비대칭 하중을 받고 비대칭 변위가 주어진 축대칭 물체의 응력해석에 관한 연구)

  • 전효중;왕지석;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.46-56
    • /
    • 1990
  • Stress analysis of axi-symetric body with non-symetric loading and non-symetric given displacements is investigated in this paper using the finite element method. As the non-symetric load and non-symetric given displacements of axi-symetric body are generally periodic functions of angle .theta., the nodal forces and nodal displacements can be expanded in cosine and sine series, that is, Fourier series. Furthermore, using Euler's formula, the cosine and sine series can be converted into exponential series and it is prooved that the related calculus become more clear. Substituting the nodal displacements expanded in Fourier series into the strain components of cylindrical coordinates system, the element strains are expressed in series form and by the principal of virtual work, the element stiffness martix and element load vector are obtained for each order. It is also showed that if the non-symetric loads are even or odd functions of angle ${\theta}$ the stiffness matrix and load vector of the system are composed with only real numbers and relatively small capacity fo computer memory is enough for calculation.

  • PDF

Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces (다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

A Study on the Vibration Characteristics of HDD Spindle Motor (하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구)

  • 장건희;한재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.