• Title/Summary/Keyword: matrix pencil

Search Result 36, Processing Time 0.025 seconds

Identification and Reduction of Noise on active circuits (능동회로에서의 노이즈 규명 및 저감)

  • Oh, Kyoung-Seok;Min, Seong-Joon;Chang, Jong-Soo;Heo, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.343-345
    • /
    • 2005
  • In the study, the noise involved on the active circuit is identified using correlation function. In order to figure out the unknown location of noise source, signals from each sections in the system are collected and the location is identified by a concept called "Noise Source SUI-face". Experiment is conducted to confirm the validity of the proposed method. Also a method to reduce and control the noise in the system signal by using Matrix Pencil Method is introduced. Experiment is attempted to prove that the total noise of system can be reduced by controlling the external noise.

  • PDF

A Study on Jammer Suppression Algorithm for Non-stationary Jamming Environment (재머의 크기가 변하는 환경에서의 억제 알고리즘 연구)

  • Yoon, Ho-Jun;Lee, Kang-In;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.239-247
    • /
    • 2018
  • Adaptive Beamforming (ABF) algorithm, which is a typical jammer suppression algorithm, guarantees the performance on the assumption that the jamming characteristics of the TDS (Training Data Sample) are stationary, which are obtained immediately before and after transmitting the pulse signal. Therefore, effective jammer suppression can not be expected when the jamming characteristics are non-stationary. In this paper, we propose a new jammer suppression algorithm, of which power spectrum fluctuates fast. In this case, we assume that the location of the jammer station is fixed during the processing time. By applying the MPM (Matrix Pencil Method) to the jamming signal in TDS, we can estimate jammer parameters such as power and incident angle, of which the power will vary fast in time or range bins after TDS. Though we assume that the jammer station is fixed, the estimated jammer's incident angle has an error due to the noise, which degrades the performance of the jammer suppression as the jammer power increases fast. Therefore, the jammer's incident angle should be re-estimated at each range bin after TDS. By using the re-estimated jammer's incident angle, we can construct new covariance matrix under the non-stationary jamming environment. Then, the optimum weight for the jammer suppression is obtained by inversing matrix estimation method based on the matrix projection with the estimated jammer parameters as variables. To verify the performance of the proposed algorithm, the SINR (signal-to-interference plus noise ratio) loss of the proposed algorithm is compared with that of the conventional ABF algorithm.

A Study of Computer-Based Discrete Mathematics Focused on the Leslie Matrix Model (컴퓨터 기반의 이산수학에 관한 연구 -Leslie 행렬 모델을 중심으로-)

  • 김민경
    • The Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.189-197
    • /
    • 1999
  • Discrete mathematics allows students to examine and explore unique, special problem situations which were not used to solve problems by paper-and-pencil procedures or applying common formulas. The use and integration of accessible computer-related technologies such as 'Mathematics' or 'Maple' software programs enables students to explore problem situation dramatically. This study shows that it is possible to introduce computer-based discrete mathematics focused on the Leslie matrix model as modeling age-specific population growth to high school students.

  • PDF

Preformance Comparison of MLE Technique with POF(Pencil of Functions) Method for SEM Parameter Estimation (SEM 파라메타 측정에 대한 MLE 기법과 POF 기법의 성능비교)

  • Kim, Deok-Nyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.511-516
    • /
    • 1994
  • Parameter estimation techniques are discussed for the complex frequency analysis of an electromagnetic scatterer. The paper suggests how the Maximum Likelihood estimation technique can be applied for this purpose. Experiments on hypothetical data sets demonstrate that the Maximum Likelihood technique is better than the Pencil of Functions technique. Although there have been several techniques including MLE suggested as tools of the parameter estimation, the proposed method has strong advantages under the noise-contaminated sample data environment because it uses minimal dimension of system matrix that stands totally independent of the length of extracted data set.

  • PDF

A methodology for Identification of an Air Cavity Underground Using its Natural Poles (물체의 고유 Pole을 이용한 지하 속의 빈 공간 식별 방안)

  • Lee, Woojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.566-572
    • /
    • 2021
  • A methodology for the identification and coordinates estimation of air cavities under urban ground or sandy soil using its natural poles and natural resonant frequencies is presented. The potential of this methodology was analyzed. Simulation models of PEC (Perfect Electric Conductor)s with various shapes and dimensions were developed using an EM (Electromagnetic) simulator. The Cauchy method was applied to the obtained EM scattering response of various objects from EM simulation models. The natural poles of objects corresponding to its instinct characterization were then extracted. Thus, a library of poles can be generated using their natural poles. The generated library of poles provided the possibility of identifying a target by comparing them with the computed natural poles from a target. The simulation models were made assuming that there is an air cavity under urban ground or sandy soil. The response of the desired target was extracted from the electromagnetic wave scattering data from its simulation model. The coordinates of the target were estimated using the time delay of the impulse response (peak of the impulse response) in the time domain. The MP (Matrix Pencil) method was applied to extract the natural poles of a target. Finally, a 0.2-m-diameter spherical air cavity underground could be estimated by comparing both the pole library of the objects and the calculated natural poles and the natural resonant frequency of the target. The computed location (depth) of a target showed an accuracy of approximately 84 to 93%.

High-Precision Ranging Scheme based on Multipath Delay Analysis in IR-UWB systems (IR-UWB 시스템에서 다중경로 지연시간 분석을 통한 고 정밀 거리추정)

  • Jeon, In-Ho;Kim, Young-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.778-785
    • /
    • 2010
  • This paper proposes a high-precision ranging scheme based on channel estimation technique and multipath delay analysis in IR-UWB systems. When the IR-UWB signal is transmitted and received, the high-precision ranging is estimated with the time-of-arrival information of the signal. In the proposed scheme, the channel estimation process with the minimum mean square error technique or zero forcing technique is performed and the overlapped multipath within the pulse is analyzed with matrix pencil (MP) algorithm to achieve the ranging accuracy of centimeters. The performance of proposed scheme is evaluated with various IEEE 802.15.4a channel models and the relationship between the ranging performance and the computational complexity is analyzed in terms of the MP parameter values.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.

Noise identification on active circuits and reduction using MPM technique (능동회로에서의 노이즈 규명 및 MPM기법을 통한 저감)

  • Oh, K.S;Lee, J.B.;Ko, I.K.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3063-3065
    • /
    • 2005
  • In the raper, the noise involved on the active circuit is identified using correlation function. In order to identify the unknown noise source location, signals from each points on the system are detected and the location is identified by a concept calico Noise Source Surface. The fault diagnosis method is suggested for each element by identifying the noise source in active circuit using SVM. Experiment is conducted to confirm the validity of the proposed method. Also a method to reduce and control the noise in the system signal by using Matrix Pencil Method is introduced.

  • PDF

The Frequency Characteristics of Elastic Wave by Crack Propagation of SiC/SiC Composites

  • Kim, J.W.;Nam, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.110-114
    • /
    • 2012
  • We studied on the nondestructive evaluation of the elastic wave signal of SiC ceramics and SiC/SiC composite ceramics under monotonic tensile loading. The elastic wave signal of cross and unidirectional SiC/SiC composite ceramics were obtained by pencil lead method and bending test. It was applied for the time-frequency method which used by the discrete wavelet analysis algorithm. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the contribution of SiC fiber frequency. The results were compared with the characteristic of frequency group from SiC slurry and fiber. Based on the results, if it is possible to shift up and design as a higher frequency group, we will can make the superior material better than those of exiting SiC/SiC composites.

  • PDF

A Development of the Analysis Technique for Radar Target Signature and the Sofware using RCS/ISAR (RCS/ISAR를 이용한 레이다 표적분석 기법 및 소프트웨어 개발)

  • Kwon Kyoung-IL;Yoo Ji-Hee;Chung Myung-Soo;Yoon Taehwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.88-99
    • /
    • 2004
  • A development of a software on radar target signature analysis is presented in this paper The target signature includes Radar Cross Section(RCS) prediction, Range Profile(RP) processing and Inverse Synthetic Aperture Radar(ISAR) processing. Physical Optics(PO) is the basic calculation method for RCS prediction and Geometrical Optics(GO) is used for ray tracing in the field calculation of multiple reflection. For RP and ISAR, Fast Fourier Transform(FFT) and Matrix Pencil(MP) method were implemented for post-processing. Those results are integrated into two separate softwares named as Radar Target Signature Generator(RTSG) and Radar Target Signature Analyser(RTSA). Several test results show good performances in radar signature prediction and analysis.