• 제목/요약/키워드: matrix gene

검색결과 422건 처리시간 0.023초

Matrix Metalloproteinase-2 (-1306 C>T) Promoter Polymorphism and Risk of Colorectal Cancer in the Saudi Population

  • Saeed, Hesham Mahmoud;Alanazi, Mohammad Saud;Parine, Narasimha Reddy;Shaik, Jilani;Semlali, Abdelhabib;Alharbi, Othman;Azzam, Nahla;Aljebreen, Abdulrahman;Almadi, Majid;Shalaby, Manal Aly
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6025-6030
    • /
    • 2013
  • Background: Matrix metalloproteinase-2 (MMP-2) is an enzyme with proteolytic activity against matrix proteins, particularly basement membrane constituents. A single nucleotide polymorphism (SNP) at -1306, which disrupts a Sp1-type promoter site (CCACC box), results in strikingly lower promoter activity with the T allele. In the present study, we investigated whether this MMP-2 genetic polymorphism might be associated with susceptibility to colorectal cancer (CRC) in the Saudi population. We also analyzed MMP-2 gene expression level sin CRC patients and 4 different cancer cell lines. Materials and Methods: TaqMan allele discrimination assays and DNA sequencing techniques were used to investigate the $C^{-1306}T$ SNP in the MMP-2 gene of Saudi colorectal cancer patients and controls. The MMP-2 gene expression level was also determined in 12 colon cancer tissue samples collected from unrelated patients and histologically normal tissues distant from tumor margins. Results and Conclusions: The MMP-2 $C^{-1306}T$ SNP in the promoter region was associated with CRC in our Saudi population and the MMP-2 gene expression level was found to be 10 times higher in CRC patients. The MMP-2 $C^{-1306}T$ SNP is significantly associated with CRC in the Saudi population and this finding suggested that MMP-2 variants might help predict CRC progression risk among Saudis. We propose that analysis of this gene polymorphism could assist in identification of patient subgroups at risk of a poor disease outcome.

Targeting Tumor Metastasis by Regulating Nm23 Gene Expression

  • Prabhu, V. Vinod;Siddikuzzaman, Siddikuzzaman;Grace, V.M. Berlin;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3539-3548
    • /
    • 2012
  • The Nm23 gene is a metastatic suppressor identified in a melanoma cell line and expressed in different tumors where their levels of expression are associated with reduced or increased metastatic potential. Nm23 is one of the over 20 metastasis suppressor genes (MSGs) confirmed in vivo. It is highly conserved from yeast to human, implying a critical developmental function. Tumors with alteration of the p53 gene and reduced expression of the Nm23 gene are more prone to metastasis. Nm23-H1 has 3'-5' exonuclease activity. This review focuses on the role of Nm23 in cancer progression and also a potential novel target for cancer therapy.

Global Optimization of Clusters in Gene Expression Data of DNA Microarrays by Deterministic Annealing

  • Lee, Kwon Moo;Chung, Tae Su;Kim, Ju Han
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.20-24
    • /
    • 2003
  • The analysis of DNA microarry data is one of the most important things for functional genomics research. The matrix representation of microarray data and its successive 'optimal' incisional hyperplanes is a useful platform for developing optimization algorithms to determine the optimal partitioning of pairwise proximity matrix representing completely connected and weighted graph. We developed Deterministic Annealing (DA) approach to determine the successive optimal binary partitioning. DA algorithm demonstrated good performance with the ability to find the 'globally optimal' binary partitions. In addition, the objects that have not been clustered at small non­zero temperature, are considered to be very sensitive to even small randomness, and can be used to estimate the reliability of the clustering.

RETROVIRUS-MEDIATED DELIVERY OF TIMP-2 SUPPRESSES MMP-2 SECRETION AND INVASION: A GENE THERAPY APPROACH

  • Ahn, Seong-Min;Yeowon Sohn;Kim, Yun-Soo;Aree Moon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.200-200
    • /
    • 2001
  • The matrix metalloproteases (MMPs) play important roles in metastasis and invasion in various cell types. An endogenous inhibitor of MMP, tissue inhibitor of metalloprotease-2 (TIMP-2), has high specificity for MMP-2. An imbalance between MMP-2 and TIMP-2 causes the degradation of the extracellular matrix associated with pathological events including invasion and metastasis. Since TIMPs are secreted molecules, they have the potential to be used for gene therapy of certain tumors. (omitted)

  • PDF

Identification of Superior Single Nucleotide Polymorphisms (SNP) Combinations Related to Economic Traits by Genotype Matrix Mapping (GMM) in Hanwoo (Korean Cattle)

  • Lee, Yoon-Seok;Oh, Dong-Yep;Lee, Yong-Won;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1504-1513
    • /
    • 2011
  • It is important to identify genetic interactions related to human diseases or animal traits. Many linear statistical models have been reported but they did not consider genetic interactions. Genotype matrix mapping (GMM) has been developed to identify genetic interactions. This study uses the GMM method to detect superior SNP combinations of the CCDC158 gene that influences average daily gain, marbling score, cold carcass weight and longissimus muscle dorsi area traits in Hanwoo. We evaluated the statistical significance of the major SNP combinations selected by implementing the permutation test of the F-measure. The effect of g.34425+102 A>T (AA), g.8778G>A (GG) and g.4102+36T>G (GT) SNP combinations produced higher performance of average daily gain, marbling score, cold carcass weight and the longissimus muscle dorsi area traits than the effect of a single SNP. GMM is a fast and reliable method for multiple SNP analysis with potential application in marker-assisted selection. GMM may prospectively be used for genetic assessment of quantitative traits after further development.

낙타유가 함유된 리포좀 제조 및 피부 노화 개선 효과 연구 (Preparation of Camel Milk Liposome and Its Anti-Aging Effects)

  • 최성규;박근동;김다애;이대우;김윤정
    • 대한화장품학회지
    • /
    • 제40권2호
    • /
    • pp.155-162
    • /
    • 2014
  • 본 연구에서는 낙타유를 유효성분으로 하여 리포좀을 제조하였고, 이를 이용하여 항노화 효능을 갖는 화장품 원료를 개발하고자 다양한 실험을 실시하였다. 제조된 낙타유 리포좀은 피부 섬유아세포에서 collagen과 hyaluronan synthase-3 (HAS-3)의 발현을 증가시키고 matrix metalloproteinase (MMP)-1의 발현을 감소시킬 뿐 아니라 elastase의 활성을 억제하여 주름 개선 기능을 갖는 것을 확인하였다. 또한 자외선으로부터 손상된 세포를 재생시키는 효과를 확인하였다. 이에 따라 낙타유를 함유한 리포좀은 항노화 소재로 활용할 수 있을 것으로 사료된다.

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제51권5호
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat

  • Ra, Ho Jong;Lee, Hyun Jae;Jo, Ho Seung;Nam, Dae Cheol;Lee, Young Bok;Kang, Byeong Hun;Moon, Dong Kyu;Kim, Dong Hee;Lee, Choong Jae;Hwang, Sun-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.19-26
    • /
    • 2017
  • We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ ($IL-1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.

Identification and Expression Analysis of Chloroplast p-psbB Gene Differentially Expressed in Wild Ginseng

  • Kim, Doo-Young;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Yi;Jang, Jun-Hyeog
    • 대한약침학회지
    • /
    • 제15권1호
    • /
    • pp.18-22
    • /
    • 2012
  • Panax ginseng is a well-known herbal medicine in traditional Asian medicine. Although wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Using suppressive subtraction hybridization, we cloned the p-psbB gene as a candidate target gene for a wild ginseng-specific gene. Here, we report that one of the clones isolated in this screen was the chloroplast p-psbB gene, a chlorophyll a-binding inner antenna protein in the photosystem II complex, located in the lipid matrix of the thylakoid membrane. Real-time results showed that the expression of the p-psbB gene was significantly up-regulated in wild ginseng as compared to cultivated ginseng. Thus, the p-psbB gene may be one of the important markers of wild ginseng.