• Title/Summary/Keyword: matrix correction

Search Result 179, Processing Time 0.025 seconds

Design Optimization Using Two-Point Diagonal Quadratic Approximation(TDQA) (이점 대각 이차 근사화(TDQA) 기법을 적용한 최적설계)

  • Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.386-391
    • /
    • 2001
  • This paper presents a new two-point approximation method based on the exponential intervening variable. To avoid the lack of definition of the conventional exponential intervening variables due to zero- or negative-valued design variables the shifting level into each exponential intervening variable is introduced. Then a new quadratic approximation, whose Hessian matrix has only diagonal elements of different values, is proposed in terms of these intervening variables. These diagonal elements are computed in a closed form, which correct the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the original function at the previous point. Finally, the authors developed a sequential approximate optimizer, solved several typical design problems used in the literature and compared these optimization results with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Paleomagnetic Study on the Remanent Magnetization of the Silla Conglomerate Formation in Jinju and Goryeong Areas (진주 및 고령 지역에 분포하는 신라역암층의 잔류자화에 대한 고지자기 연구)

  • Kim, Tae Sung;Min, Kyung Duck;Lee, Youn Soo;Lee, Young Hoon;Lee, Dong Young
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.325-338
    • /
    • 1998
  • 105 oriented samples (19 matrix samples, 86 cobble samples) were collected from the Silla Coglomerate Formation in Jinju and Goryeong areas to clarify the regional remagnetization of Cretaceous Kyongsang supergroup. Both the alternating field and thermal demagnetizations were conducted for the collected samples. The characteristic remanent magnetizations of these samples divided into three types in the Silla Conglomerate Formation: The ingredient magnetic minerals are magnetite, hematite, or both magnetite and hematite in a specimen. The characteristic remanent directions of cobble samples did not clustered to any direction. And the characteristic remanent directions of interbedded sandstones in the Silla Conglomerate Formation is $D/I=20.6^{\circ}/54.5^{\circ}$ (${\alpha}_{95}=11.1^{\circ}$, k=48.8) after tilting correction, agree with previous paleomagnetic studies on the Hayang group. These results implied that conglomerate test was passed indicating no regional remagnetization in the studied area after deposition of the Silla Conglomerate Formation.

  • PDF

Geometrically non-linear transient C° finite element analysis of composite and sandwich plates with a refined theory

  • Kommineni, J.R.;Kant, T.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.87-102
    • /
    • 1993
  • A $C^{\circ}$ continuous finite element formulation of a higher order displacement theory is presented for predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displacement components through the thickness of the laminate and the theory requires no shear correction coefficients. In the time domain, the explicit central difference integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the total mass of the element and included effects due to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for central transverse deflection, stresses and stress resultants are presented for square/rectangular composite and sandwich plates under various boundary conditions and loadings and these are compared with the results from other sources. Some new results are also tabulated for future reference.

Comparison of digitized radiographic alveolar features with age (연령 변화에 따른 치조골의 디지탈 방사선학적 특성비교)

  • Lee Keon Il
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The purpose of the present study was to use digital profile image features and digital image analysis of fixed-dimension bone regions, extracted from standardized periapical radiographs of the maxilla, to determine whether differences exist in alveolar bone of younger women(mean age: 59.23±7.34 years) and just menopaused women(mean age: 59.23±7.34). Periapical films were used from two groups of 20 randomly selected women. None of the subjects had a remarkable medical history. To simplify protocol, we chose one interproximal bone area between the maxillary right canine and lateral incisor for study. Ech film was digitized into a 1312 x 1024 pixel x 8 bit depth matrix by means of a Nikon 35 mm film scanner(LS-35lOAF, Japan) with fixed gain and internal dark current correction to maintain constant illumination. The scanner was interfaced to a Macintosh LC III computer(Apple Computer, Charlotte, N.C.). Area and profile orientation were selected with a NIMH Image 1.37(NIH Research Services Branch, Bethesda, Md.). Histogram features were extracted from each profile and area. The results of this study indicate that mean pixel intensities didn't differ significantly between two groups and there was a high correlarion-coefficient between digitized radiographic profile features and area features.

  • PDF

Efficient Mechanical System Optimization Using Two-Point Diagonal Quadratic Approximation in the Nonlinear Intervening Variable Space

  • Park, Dong-Hoon;Kim, Min-Soo;Kim, Jong-Rip;Jeon, Jae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1257-1267
    • /
    • 2001
  • For efficient mechanical system optimization, a new two-point approximation method is presented. Unlike the conventional two-point approximation methods such as TPEA, TANA, TANA-1, TANA-2 and TANA-3, this introduces the shifting level into each exponential intervening variable to avoid the lack of definition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these shifted exponential intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

Design Optimization Using Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 적용한 최적설계)

  • Choe, Dong-Hun;Kim, Min-Su;Kim, Jong-Rip;Jeon, Jae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1423-1431
    • /
    • 2001
  • Based on the exponential intervening variable, a new two-point approximation method is presented. This introduces the shifting level into each exponential intervening variable to avoid the lack of def inition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Mathematical Modeling and Control for A Single Winding Bearingless Flywheel Motor in Electric/Suspension Mode

  • Yuan, Ye;Huang, Yonghong;Xiang, Qianwen;Sun, Yukun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1935-1944
    • /
    • 2018
  • With the increase of the production of energy from renewable, it becomes important to look at techniques to store this energy. Therefore, a single winding bearingless flywheel motor (SWBFM) specially for flywheel energy storage system is introduced. For the control system of SWBFM, coupling between the torque and the suspension subsystems exists inevitably. It is necessary to build a reasonable radial force mathematical model to precisely control SWBFM. However, SWBFM has twelve independently controlled windings which leads to high-order matrix transformation and complex differential calculation in the process of mathematical modeling based on virtual displacement method. In this frame, a Maxwell tensor modeling method which is no need the detailed derivation and complex theoretical computation is present. Moreover, it possesses advantages of universality, accuracy, and directness. The fringing magnetic path is improved from straight and circular lines to elliptical line and the rationality of elliptical line is verified by virtual displacement theory according to electromagnetic torque characteristics. A correction function is taken to increase the model accuracy based on finite element analysis. Simulation and experimental results show that the control system of SWBFM with radial force mathematical model based on Maxwell tensor method is feasible and has high precision.

Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation

  • Khelifa, Zoubida;Hadji, Lazreg;Daouadji, Tahar Hassaine;Bourada, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • This study deals with buckling analysis with stretching effect of functionally graded carbon nanotube-reinforced composite beams resting on an elastic foundation. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of buckling analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the buckling responses of CNTRC beam are discussed.