• 제목/요약/키워드: matrix algebra

검색결과 143건 처리시간 0.293초

역사발생적 관점에서 본 행렬 지도의 재음미 (A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle)

  • 조성민
    • 한국학교수학회논문집
    • /
    • 제12권1호
    • /
    • pp.99-114
    • /
    • 2009
  • 선형대수는 최근 이공계열 뿐만 아니라 인문 사회 과학 분야에서도 많은 관심을 받고 있다. 그러나 선형대수는 대학의 기초 과목으로 채택된 지 20-30년 밖에 되지 않은 분야로, 선형대수의 지도에 대한 연구는 상대적으로 많지 않은 편이다. 이에 1990년 선형대수 교육과정 연구 단체(The Linear Algebra Curriculum Study Group)가 결성되고, 선형대수 지도를 개선하기 위한 움직임이 다양하게 나타나고 있다. 본 논문에서는 선형대수의 주요 도구 중 하나인 행렬과 관련된 연구들을 살펴보고, 역사발생적 원리를 바탕으로 한 행렬 지도 방법을 제안하고자 한다. 이를 위해 행렬과 행렬식, 연립일차방정식과 행렬, 일차변환의 개념 발달 과정을 분석하고, 역사발생적 관점에서의 행렬 지도 방안을 모색하였다.

  • PDF

선형대수학의 학습에서 벡터이론은 행렬이론보다 선행되어야 하는가 (Is vector theory prior to matrix theory in teaching of linear algebra)

  • 박홍경;김태완
    • 한국수학사학회지
    • /
    • 제23권2호
    • /
    • pp.89-99
    • /
    • 2010
  • 오늘날 선형대수학은 이론의 기초적 성격과 응용의 풍부성으로 인해 대학수학에 있어서 필수적인 분야로서 자리하고 있다. 벡터이론과 행렬이론은 선형대수학의 주된 분야이다. 본 논문에서는 선형대수학의 학습에서 벡터이론과 행렬이론 중 어느 것을 먼저 도입하는 것이 바람직할 것인가에 대한 질문을 제시할 때 본 연구의 주된 결과, 역사적 순서와는 달리 벡터이론이 행렬이론보다 선행되어야 함을 주장한다.

NILPOTENCY INDEX OF NIL-ALGEBRA OF NIL-INDEX 3

  • LEE WOO
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.569-573
    • /
    • 2006
  • Nagata and Higman proved that any nil-algebra of finite nilindex is nilpotent of finite index. The Nagata-Higman Theorem can be formulated in terms of T-ideals. TheT-ideal generated by $a^n$ for all $a{\in}A$ is also generated by the symmetric polynomials. The symmetric polynomials play an importmant role in analyzing nil-algebra. We construct the incidence matrix with the symmetric polynomials. Using this incidence matrix, we determine the nilpotency index of nil-algebra of nil-index 3.

THE TENSOR PRODUCT OF AN ODD SPHERICAL NON-COMMUTATIVE TORUS WITH A CUNTZ ALGEBRA

  • Boo, Deok-Hoon;Park, Chun-Gil
    • 충청수학회지
    • /
    • 제11권1호
    • /
    • pp.151-161
    • /
    • 1998
  • The odd spherical non-commutative tori $\mathbb{S}_{\omega}$ were defined in [2]. Assume that no non-trivial matrix algebra can be factored out of $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_{km}(\mathbb{C})$. It is shown that the tensor product of $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has the trivial bundle structure if and, only if km and 2d - 1 are relatively prime, and that the tensor product of $\mathbb{S}_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when km > 1.

  • PDF

MATRIX REALIZATION AND ITS APPLICATION OF THE LIE ALGEBRA OF TYPE F4

  • CHOI, SEUNGIL
    • 호남수학학술지
    • /
    • 제28권2호
    • /
    • pp.205-212
    • /
    • 2006
  • The Lie algebra of type $F_4$ has the 26 dimensional representation. Its matrix realization can be obtained via 26 by 26 matrices and has a direct useful application to degenerate principal series for p-adic groups of type $F_4$.

  • PDF

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.

VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA Cℓ0,n

  • Song, Youngkwon;Lee, Doohann
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.571-579
    • /
    • 2014
  • In this paper, we present new vector generators of a matrix subalgebra $L_{0,n}$, which is isomorphic to the Clifford algebra $C{\ell}_{0,n}$, and we obtain the matrix form of inverse of a vector in $L_{0,n}$. Moreover, we consider the solution of a linear equation $xg_2=g_2x$, where $g_2$ is a vector generator of $L_{0,n}$.

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

  • Song, Young-Kwon
    • 대한수학회지
    • /
    • 제40권2호
    • /
    • pp.241-250
    • /
    • 2003
  • Let (B, m$_{B}$, k) be a maximal commutative $textsc{k}$-subalgebra of M$_{m}$(k). Then, for some element z $\in$ Soc(B), a k-algebra R = B[X,Y]/I, where I = (m$_{B}$X, m$_{B}$Y, X$^2$- z,Y$^2$- z, XY) will create an interesting maximal commutative $textsc{k}$-subalgebra of a matrix algebra which is neither a $C_1$-construction nor a $C_2$-construction. This construction will also be useful to embed a maximal commutative $textsc{k}$-subalgebra of matrix algebra to a maximal commutative $textsc{k}$-subalgebra of a larger size matrix algebra.gebra.a.

DETERMINANT OF INCIDENCE MATRIX OF NIL-ALGEBRA

  • Lee, Woo
    • 대한수학회논문집
    • /
    • 제17권4호
    • /
    • pp.577-581
    • /
    • 2002
  • The incidence matrices corresponding to a nil-algebra of finite index % can be used to determine the nilpotency. We find the smallest positive integer n such that the sum of the incidence matrices Σ$\_$p/$\^$p/ is invertible. In this paper, we give a different proof of the case that the nil-algebra of index 2 has nilpotency less than or equal to 4.