• Title/Summary/Keyword: mathematics studies

Search Result 2,395, Processing Time 0.027 seconds

Non-contact Input Method based on Face Recognition and Pyautogui Mouse Control (얼굴 인식과 Pyautogui 마우스 제어 기반의 비접촉식 입력 기법)

  • Park, Sung-jin;Shin, Ye-eun;Lee, Byung-joon;Oh, Ha-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1279-1292
    • /
    • 2022
  • This study proposes a non-contact input method based on face recognition and Pyautogui mouse control as a system that can help users who have difficulty using input devices such as conventional mouse due to physical discomfort. This study includes features that help web surfing more conveniently, especially screen zoom, scroll function, and also solves the problem of eye fatigue, which has been suggested as a limitation in existing non-contact input systems. In addition, various set values can be adjusted in consideration of individual physical differences and Internet usage habits. Furthermore, no high-performance CPU or GPU environment is required, and no separate tracker devices or high-performance cameras are required. Through these studies, we intended to contribute to the realization of barrier-free access by increasing the web accessibility of the disabled and the elderly who find it difficult to use web content.

Investigation of Dongje School Based on the Primary Historical Data and Geographical Information (일차 사료와 지리 정보를 통한 동제학교에 대한 고찰)

  • Ha, Ki-Tae;Choi, June-Yong;Kim, Kibong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.105-112
    • /
    • 2022
  • Dongje school (同濟學校), alternately Dongje medical school, is generally recognized as the first modern school for Korean medicine. However, there is very limited information concerning its establishment, duration period, governance, location, and contents for teaching. We found several points which are different from popular opinions through investigating news articles of those days and maps. Dongje school has established on June 1, 1906 and the time of its discontinuance is not clear. The school was founded with the cooperation of three former government officials of the Korean Empire, Eungse Lee (李應世), Piljoo Kang (姜弼周), and Dongho Cho (趙東浩) and many people donated fund for supporting Dongje school. However, there is no evidence of national or royal expenditures for operating the school. Dongje school has been established in 76-6, Seohak hill (西學峴), Yeogyeong-bang (餘慶坊), West county (西署), Seoul and moved to Naesum-si (內贍寺) located in Bongsangsi front village (奉常寺前門洞), Indal-bang (仁達坊), West county, at September 1906. The curriculum of the school comprehends several disciplines including literature in Korean and Chinese, mathematics, foreign language, physics, and Western medicine, as well as Korean medicine. Particularly at that time, they thought both of women and men. To elucidate the issue of the governance of Dongje school regarding the national or royal establishment, more information and extensive studies should be needed.

Career Development of Upper Elementary Students through STEAMS-Based Gardening Programs

  • Jang, Jeungeun;Hong, Jong Won;Kim, Jongyun
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.221-231
    • /
    • 2020
  • Since elementary school is a time in which basic concepts like attitudes and mindsets about careers are formed, career education is very important to elementary school students. This study was conducted to investigate the effects of a gardening program applying the academic disciplines of Science, Technology, Engineering, Arts, Mathematics, and Society (STEAMS) on developing career education for elementary school students. In order to determine the effectiveness of the program on career development of elementary school students, this study was conducted with 28 upper elementary students in the experimental group who participated in the gardening program, and 30 upper elementary students in the control group who did not. The program was comprised of total 8 sessions, one session per week, with various garden activities. The career development scores of the two groups before and after the program were comparatively analyzed. Before the program, the experimental group had significantly lower scores for career development than the control group. After 8 weeks of the program, the control group did not show any changes in career development, while the experimental group that participated in the program showed a significant increase in career development, resulting in no difference in career development between the two groups after the program. Therefore, the program has positive effects on improving career development of upper elementary students who previously had insufficient career development. Overall, the program had positive effects on career development of upper elementary students, and further research is needed to systematically promote the STEAMS-based gardening program to promote interest and understanding of students by associating plant-based gardening activities with various subjects such as science, art, and social studies.

Changes and Issues Regarding the Elementary Science Curriculum: Focusing on Physics (초등 과학 교육과정의 변화와 쟁점 - 물리 영역을 중심으로 -)

  • Byun, Taejin
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.217-235
    • /
    • 2022
  • This study aimed to analyze the changes in the physics curriculum of elementary schools over the past years and to discuss the issues faced by the science curriculum for elementary education prior to the next curriculum revision. We analyzed changes in the elements of the contents from the 7th curriculum to the 2015 revised curriculum and reviewed studies conducted after the revision in 2015. Additionally, three professors majoring in physics education discussed the results of the curriculum analysis. The result indicates that content of the physics curriculum for elementary education was generally reduced after the 7th curriculum. Specifically, difficult concepts were omitted or designated to a higher school level. Concerns related to the science curriculum pertain to the content adequacy and difficulty of the current curriculum, its relationship with mathematics, connection between the Nuri curriculum and the integrated curriculum for the 1st and 2nd grades, and the achievement standard predicate problem.

Bit Register Based Algorithm for Thread Pool Management (스레드 풀 관리를 위한 비트 레지스터 기반 알고리즘)

  • Shin, Seung-Hyeok;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.331-339
    • /
    • 2017
  • This paper proposes a thread pool management technique of an websocket server that is applicable to embedded systems. WebSocket is a proposed technique for consisting a dynamic web, and is constructed using HTML5 and jQuery. Various studies have been progressing to construct a dynamic web by Apache, Oracle and etc. Previous web service systems require high-capacity, high-performance hardware specifications and are not suitable for embedded systems. The node.js which is consist of HTML5 and jQuery is a typical websocket server which is made by open sources, and is a java script based web application which is composed of a single thread. The node.js has a limitation on the performance for processing a high velocity data on the embedded system. We make up a multi-thread based websoket server which can solve the mentioned problem. The thread pool is managed by a bit register and suitable for embedded systems. To evaluate the performance of the proposed algorithm, we uses JMeter that is a network test tool.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Deciphering the Genetic Code in the RNA Tie Club: Observations on Multidisciplinary Research and a Common Research Agenda (RNA 타이 클럽의 유전암호 해독 연구: 다학제 협동연구와 공동의 연구의제에 관한 고찰)

  • Kim, Bong-kook
    • Journal of Science and Technology Studies
    • /
    • v.17 no.1
    • /
    • pp.71-115
    • /
    • 2017
  • In 1953, theoretical physicist George Gamow attempted to explain the process of protein synthesis by hypothesizing that the base sequence of DNA encodes a protein's amino acid sequence and, in response, proposed the nucleic acid-protein information transfer model, which he dubbed the "diamond code." After expressing interest in discussing the daring hypothesis, contemporary biologists, including James Watson, Francis Crick, Sydney Brenner, and Gunther Stent, were soon invited to join the RNA Tie Club, an informal research group that would also count biologists and various researchers in physics, mathematics, and computer engineering among its members. In examining the club's formation, growth, and decline in multidisciplinary research on deciphering the genetic code in the 1950s, this paper first investigates whether Gamow's idiosyncratic approach could be adopted as a collaborative research forum among contemporary biologists. Second, it explores how the RNA Tie Club's research agenda could have been expanded to other relevant research topics needing multidisciplinary approach? Third, it asks why and how the RNA Tie Club dissolved in the late 1950s. In answering those questions, this paper shows that analyses on the intersymbol correlation of the overlapping code functioned to integrate diverse approaches, including sequence decoding and statistical analysis, in research on the genetic code. As those analyses reveal, the peculiar approaches of the RNA Tie Club could be regarded as a useful method for biological research. The paper also concludes that the RNA Tie Club dissolved in the late 1950s due to the disappearance of the collaborative research agenda when the overlapping code hypothesis was abandoned.