• Title/Summary/Keyword: mathematics problem

Search Result 3,766, Processing Time 0.037 seconds

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng;Heidarkhani, Shapour;Kou, Kit Ian;Salari, Amjad
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1573-1594
    • /
    • 2017
  • This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.

PRECONDITIONERS FOR THE PRESSURE-CORRECTION METHOD APPLIED TO THE UNSTEADY STOKES PROBLEM

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.307-321
    • /
    • 2004
  • In this paper, the unsteady Stokes problem is considered and also the pressure-correction method for the problem is described. At a fixed time level, we reduce the problem to two symmetric positive definite problems which depend on a time step parameter. Linear systems that arise from the problems are large, sparse, symmetric, positive definite and ill-conditioned as the time step tends to zero. Preconditioned problems based on an additive Schwarz method for solving the symmetric positive definite problems are derived and preconditioners are defined implicitly. It will be shown that the rate of convergence is independent of the mesh parameters as well as the time step size.

Designing Mathematical Activities Centered on Conjecture and Problem Posing in School Mathematics (학교수학에서 추측과 문제제기 중심의 수학적 탐구 활동 설계하기)

  • Do, Jong-Hoon
    • The Mathematical Education
    • /
    • v.46 no.1 s.116
    • /
    • pp.69-79
    • /
    • 2007
  • Students experience many problem solving activities in school mathematics. These activities have focused on finding the solution whose existence was known, and then again conjecture about existence of solution or posing of problems has been neglected. It needs to put more emphasis on conjecture and problem posing activities in school mathematics. To do this, a model and examples of designing mathematical activities centered on conjecture and problem posing are needed. In this article, we introduce some examples of designing such activities (from the pythagorean theorem, the determination condition of triangle, and existing solved-problems in textbook) and examine suggestions for mathematics education. Our examples can be used as instructional materials for mathematically able students at middle school.

  • PDF

Analysis of problem posing activity of fifth grade students (초등학교 5학년 학생들의 문제 만들기 활동 분석)

  • Sung, Chang-Geun;Lee, Nam kyung;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.20 no.3
    • /
    • pp.193-204
    • /
    • 2017
  • The purpose of the study was to investigate and develop a practical approach to integrating student-driven mathematical problems posing in mathematics instruction. A problem posing activity was performed during regular mathematics instruction. A total of 540 mathematical problems generated by students were recorded and analysed using systemic procedures and criteria. Of the problems, 81% were mathematically solvable problem and 18% were classified as error type problems. The Mathematically solvable problem were analysed and categorized according to the complexity level; 13% were of a high-level, 30% mid-level and 57% low-level. The error-type problem were classified as such within three categories: non-mathematical problem, statement or mathematically unsolvable problem. The error-type problem category was distributed variously according to the leaning theme and accomplishment level. The study has important implications in that it used systemic procedures and criteria to analyse problem generated by students and provided the way for integrating mathematical instruction and problem posing activity.

A Study on Productive Struggle in Mathematics Problem Solving (수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.329-350
    • /
    • 2019
  • Productive struggle is a student's persevering effort to understand mathematical concepts and solve challenging problems that are not easily solved, but the problem can lead to curiosity. Productive struggle is a key component of students' learning mathematics with a conceptual understanding, and supporting it in learning mathematics is one of the most effective mathematics teaching practices. In comparison to research on students' productive struggles, there is little research on preservice mathematics teachers' productive struggles. Thus, this study focused on the productive struggles that preservice mathematics teachers face in solving a non-routine mathematics problem. Polya's four-step problem-solving process was used to analyze the collected data. Examples of preservice teachers' productive struggles were analyzed in terms of each stage of the problem-solving process. The analysis showed that limited prior knowledge of the preservice teachers caused productive struggle in the stages of understanding, planning, and carrying out, and it had a significant influence on the problem-solving process overall. Moreover, preservice teachers' experiences of the pleasure of learning by going through productive struggle in solving problems encouraged them to support the use of productive struggle for effective mathematics learning for students, in the future. Therefore, the study's results are expected to help preservice teachers develop their professional expertise by taking the opportunity to engage in learning mathematics through productive struggle.

An Influence of Visualization on Geometric Problem Solving in the Elementary Mathematics (시각화가 초등기하문제해결에 미치는 영향)

  • Yun, Yea-Joo;Kang, Sin-Po;Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.4
    • /
    • pp.655-678
    • /
    • 2010
  • In the elementary mathematics, geometric education emphasize spatial sense and understandings of figures through development of intuitions in space. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and methods in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. First, we investigate visualization methods for plane problem solving and space problem solving respectively, and analyse in diagram form how progress understanding of figures and visualization process. Next, we derive constituent factor on visualization process, and make a check errors which represented by difficulties in visualization process. Through these analysis, this paper aims at deriving an influence of visualization on geometric problem solving in the elementary mathematics.

  • PDF

A Survey on the Teachers' Belief about Teaching Mathematical Problem Solving and Teaching Practice (수학적 문제 해결 지도에 대한 교사의 인식과 지도의 실제 조사)

  • 조완영;김남균
    • Education of Primary School Mathematics
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2000
  • Mathematical Problem solving has been the focus of a considerable amount of research over past 30 years. But nowadays problem solving is being beginning to be of less interest to mathematics education researchers. Moreover, mathematics teachers have an urgent need to be provided with well-documented informations about "teaching of(expecially, via) problem solving" though following research issues :ⅰ) the role of the teacher in a problem-centered classroom, ⅱ) what actually takes place in problem-centered classrooms, and iii) groups and whole classes' problem solving rather than individuals. This paper intends to give some informations about practice of teaching mathematical problem solving in elementary school.ry school.

  • PDF

An Exploration of International Trends about the Core Competencies in Mathematics Curriculum (수학과 교육과정에 반영된 핵심역량의 국제적 동향 탐색)

  • Kim, Sun Hee;Park, Kyungmee;Lee, Hwan Chul
    • The Mathematical Education
    • /
    • v.54 no.1
    • /
    • pp.65-81
    • /
    • 2015
  • The purpose of this study is to investigate the international trends of how the core competencies are reflected in mathematics curriculum, and to find the implications for the revision of Korean mathematics curriculum. For this purpose, the curriculum of the 9 countries including the U.S., Canada(Ontario), England, Australia, Poland, Singapore, China, Taiwan, and Hong Kong were thoroughly reviewed. It was found that a variety of core competencies were reflected in mathematics curricula in the 9 countries such as problem solving, reasoning, communication, mathematical knowledge and skills, selection and use of tools, critical thinking, connection, modelling, application of strategies, mathematical thinking, representation, creativity, utilization of information, and reflection etc. Especially the four most common core competencies (problem solving, reasoning, communication, and creativity) were further analyzed to identify their sub components. Consequently, it was recommended that new mathematics curriculum should consider reflecting various core competencies beyond problem solving, reasoning, and communication, and these core competencies are supposed to combine with mathematics contents to increase their feasibility. Finally considering the fact that software education is getting greater attention in the new curriculum, it is necessary to incorporate computational thinking into mathematics curriculum.

Enhancing Student Beliefs about Mathematical Problem Solving: Effects of a Problem-Solving based Intervention

  • Deng, Feng;Tay, Eng Guan;Toh, Tin Lam;Leong, Yew Hoong;Quek, Khiok Seng;Toh, Pee Choon;Dindyal, Jaguthsing;Ho, Foo Him
    • Research in Mathematical Education
    • /
    • v.19 no.1
    • /
    • pp.19-41
    • /
    • 2015
  • Previous studies indicated that students tended to hold less satisfactory beliefs about the discipline of mathematics, beliefs about themselves as learners of mathematics, and beliefs about mathematics teaching and learning. However, only a few studies had developed curricular interventions to change students' beliefs. This study aimed to examine the effect of a problem-solving curriculum (i.e., Mathematical Problem Solving for Everyone, MProSE) on Singaporean Grade 7 students' beliefs about mathematical problem solving (MPS). Four classes (n =142) were engaged in ten lessons with each comprising four stages: understand the problem, devise a plan, carry out the plan, and look back. Heuristics and metacognitive control were emphasized during students' problem solving activities. Results indicated that the MProSE curriculum enabled some students to develop more satisfactory beliefs about MPS. Further path analysis showed that students' attitudes towards the MProSE curriculum are important predictors for their beliefs.

STRONG CONTROLLABILITY AND OPTIMAL CONTROL OF THE HEAT EQUATION WITH A THERMAL SOURCE

  • Kamyad, A.V.;Borzabadi, A.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.787-800
    • /
    • 2000
  • In this paper we consider an optimal control system described by n-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem. We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.