• 제목/요약/키워드: mathematical structures

검색결과 957건 처리시간 0.023초

ON THE TRANSVERSAL CONFORMAL CURVATURE TENSOR ON HERMITIAN FOLIATIONS

  • Pak, Hong-Kyung
    • 대한수학회보
    • /
    • 제28권2호
    • /
    • pp.231-241
    • /
    • 1991
  • Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) studied foliated structures on a smooth manifold with the viewpoint of transversal differential geometry. In this paper, we shall discuss certain hermitian foliations F on a riemannian manifold with a bundle-like metric, that is, their transversal bundles to F have hermitian structures.

  • PDF

Equivariant vector bundle structures on real line bundles

  • Shu, Dong-Youp
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.259-263
    • /
    • 1996
  • Let G be a topological group and X a G space. For a given nonequivariant vector bundle over X there does not always exist a G equivariant vector bundle structure. In this paper we find some sufficient conditions for nonequivariant real line bundles to have G equivariant vector bundle structures.

  • PDF

곱셈적 구조에 대한 2, 4, 6학년 학생들의 수학적 사고의 연결성 분석 (An analysis of the connections of mathematical thinking for multiplicative structures by second, fourth, and sixth graders)

  • 김유경;방정숙
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권1호
    • /
    • pp.57-73
    • /
    • 2014
  • This study investigated the connections of mathematical thinking of students at the second, fourth, and sixth grades with regard to multiplication, fraction, and proportion, all of which have multiplicative structures. A paper-and-pencil test and subsequent interviews were conducted. The results showed that mathematical thinking including vertical thinking and relational thinking was commonly involved in multiplication, fraction, and proportion. On one hand, the insufficient understanding of preceding concepts had negative impact on learning subsequent concepts. On the other hand, learning the succeeding concepts helped students solve the problems related to the preceding concepts. By analyzing the connections between the preceding concepts and the succeeding concepts, this study provides instructional implications of teaching multiplication, fraction, and proportion.

CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES

  • Campion, Maria Jesus;Candeal, Juan Carlos;Indurain, Esteban;Mehta, Ghanshyam Bhagvandas
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.449-473
    • /
    • 2012
  • In the present paper, we study the relationship between continuous order-representability and the fulfillment of the usual covering properties on topological spaces. We also consider the case of some algebraic structures providing an application of our results to the social choice theory context.

ORTHOGONAL ALMOST COMPLEX STRUCTURES ON THE RIEMANNIAN PRODUCTS OF EVEN-DIMENSIONAL ROUND SPHERES

  • Euh, Yunhee;Sekigawa, Kouei
    • 대한수학회지
    • /
    • 제50권2호
    • /
    • pp.231-240
    • /
    • 2013
  • We discuss the integrability of orthogonal almost complex structures on Riemannian products of even-dimensional round spheres and give a partial answer to the question raised by E. Calabi concerning the existence of complex structures on a product manifold of a round 2-sphere and of a round 4-sphere.

FIBRED RIEMANNIAN SPACE WITH ALMOST COMPLEX STRUCTURES

  • Choi, Jin-Hyuk;Kang, Il-Won;Kim, Byung-Hak;Shin, Yang-Mi
    • 대한수학회지
    • /
    • 제46권1호
    • /
    • pp.171-185
    • /
    • 2009
  • We study fibred Riemannian spaces with almost complex structures which are induced by the almost complex structure or the almost contact structure on the base and fibre. We show that if the total space is a complex space form, then the total space is locally Euclidean. Moreover, we deal with the fibred Riemannian space with various Kaehlerian structures.

MODEL STRUCTURES AND RECOLLEMENTS INDUCED BY DUALITY PAIRS

  • Wenjing Chen;Ling Li;Yanping Rao
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.405-423
    • /
    • 2023
  • Let (𝓛, 𝒜) be a complete duality pair. We give some equivalent characterizations of Gorenstein (𝓛, 𝒜)-projective modules and construct some model structures associated to duality pairs and Frobenius pairs. Some rings are described by Frobenius pairs. In addition, we investigate special Gorenstein (𝓛, 𝒜)-projective modules and construct some model structures and recollements associated to them.